
BugzillaMetrics Guide

Version 1.2

BugzillaMetrics Guide: Version 1.2
Copyright © 2007-2012 BugzillaMetrics Contributors

Abstract

This document contains information for end-users and administrators of BugzillaMetrics.

Please use our mailing list if you have questions that the guide doesn't answer. Before you post, please check the
archives [http://sourceforge.net/mailarchive/forum.php?forum_name=bugzillametrics-users] . To post on the mailing
list, write an email to bugzillametrics-users@lists.sourceforge.net.

The most recent version of this document can be found on the BugzillaMetrics homepage [http://
www.bugzillametrics.org] .

http://sourceforge.net/mailarchive/forum.php?forum_name=bugzillametrics-users
http://sourceforge.net/mailarchive/forum.php?forum_name=bugzillametrics-users
http://www.bugzillametrics.org
http://www.bugzillametrics.org
http://www.bugzillametrics.org

iii

Table of Contents
1. What is BugzillaMetrics? ... 1
2. Using BugzillaMetrics ... 2

2.1. Introduction .. 2
2.2. Basic Terms ... 2
2.3. The Common Metrics page ... 3

2.3.1. Base Filter ... 3
2.3.2. Grouping Parameter ... 3
2.3.3. Evaluation Period and Time Granularity .. 3

2.4. The My Queries page ... 3
2.4.1. Saving a query ... 4
2.4.2. Reloading a query .. 4
2.4.3. Static Links ... 4

2.5. Definition of Metrics in the Graphical User Interface .. 4
2.5.1. Common Concepts of the Evaluation Specifications 6
2.5.2. Count Events ... 9
2.5.3. Count Until ... 9
2.5.4. Interval Length .. 10
2.5.5. Residence Time ... 10

3. Metric Specification .. 12
3.1. Root Element ... 12
3.2. Base Filter .. 12
3.3. Grouping Parameters ... 12
3.4. Group Evaluations .. 13

3.4.1. Details Evaluation .. 13
3.4.2. Calculations ... 13

3.5. Case Value Calculations .. 14
3.5.1. Count Events ... 15
3.5.2. Count number of events until another event happens 15
3.5.3. Interval length between two events .. 15
3.5.4. Time a case was in a certain state ... 16

3.6. Evaluation Time Period ... 17
3.7. Time Period Granularity .. 17

3.7.1. User-defined Time Period Granularity ... 17
3.8. Fixed Fields ... 17
3.9. Weights .. 18
3.10. Event Filters ... 19
3.11. State Filters .. 20
3.12. Fields ... 21

4. Chart Specification .. 23
4.1. Domain Marker Elements .. 23
4.2. Range Marker Elements .. 23
4.3. Chart Elements ... 24

5. Administration of BugzillaMetrics .. 25
5.1. Installation ... 25

5.1.1. Database configuration ... 25
5.1.2. Deployment from the File Release ... 26

BugzillaMetrics Guide

iv

5.1.3. Deployment from the Source Code .. 26
5.2. Configuration Settings of BugzillaMetrics .. 28

5.2.1. Frontend Presentation Settings .. 31
5.2.2. Common Metrics ... 33
5.2.3. Evaluation of custom fields ... 33

5.3. Environment configuration .. 34
5.3.1. MySQL ... 34
5.3.2. Java Heap Space .. 34
5.3.3. Tomcat Session Timeout .. 34
5.3.4. Configuring ProxyPass on an Apache Web Server 34

5.4. Miscellaneous ... 35
5.4.1. Using BugzillaMetrics with a database other than MySQL 35
5.4.2. ValueNotResolvedException ... 35

6. Integration with CVS / Subversion .. 36
6.1. Installation ... 36

6.1.1. SCM Database configuration ... 36
6.1.2. Needed additional tools .. 36
6.1.3. Configuration Settings .. 37
6.1.4. Import SCM data ... 38

6.2. Metric specification involving the SCM - Integration 38
7. Test-Framework .. 44

7.1. BugzillaTest ... 44
7.1.1. Setup ... 44
7.1.2. Metric specification .. 47
7.1.3. Result comparison .. 47
7.1.4. BugzillaTest example ... 47

7.2. Import-Test .. 48
7.2.1. Test setup .. 49
7.2.2. Result comparison .. 50
7.2.3. ImportTest example .. 51

v

List of Tables
3.1. Available Fields .. 21
7.1. Elements for the specification of database table entries (SCM objects) 45
7.2. Elements for the specification of database table entries (Activities) 46

1

Chapter 1. What is BugzillaMetrics?
BugzillaMetrics is a tool for the evaluation of change request metrics. It offers the following
features to the user:

• Flexible XML-based specification of a wide range of metrics (e.g. incoming rate, case life
time, reopened rate, state residence time, backlog management index, etc.)

• Web-Interface for metric queries

• Graphical Wizard for metric definition without using XML

• Display of metric results as line charts or stacked area charts

• Export of the metric result to XML, Excel, HTML, and JPEG

• Traceability from metric results to individual bugs

• Easy access to the evaluation of a set of predefined common metrics

• Saving and reloading of metric queries

• Editing of XML-based metric specifications

• Access control based on existing Bugzilla user profiles or servlet-based authentication

• Optional integration with CVS/Subversion in order to evaluate metrics related to changes in
the repository

BugzillaMetrics is part of the QMetric tool suite. The QMetric tool suite provides a generic
evaluation engine for evaluating process metrics, as well as tool support for the definition of
quality assessment models and their automatic evaluation.

2

Chapter 2. Using BugzillaMetrics

2.1. Introduction
This chapter explains the usage of BugzillaMetrics via the web interface. Internally
BugzillaMetrics uses XML documents to specify how metrics are calculated (see Chapter 3,
Metric Specification), and how the metric results are displayed in a chart (see Chapter 4, Chart
Specification). The web interface enables the definition of metrics without using XML, as well
as the evaluation of existing metrics.

The web interface is split into several tab pages:

Common Metrics On this page you can select one of the predefined metrics
for evaluation.

My Queries This page shows a list of metric queries that had been
saved by the user. These queries can be evaluated or
reloaded to one of the other tab pages.

CountEvents, Count Until, Interval
Length, Residence Time

These pages offer a graphical user interface that supports
the detailed definition of a new metric. This enables you
to define your own metrics without having to learn how
to use the XML specifications.

Each page again contains a tab page Metric and a tab page XML . On the Metric tab you can
select or define metrics with a graphical interface. On the XML tab you can edit the XML
specifications of a metric. When selecting "Load XML" on the Metrics tab the corresponding
metric specification for the selections in the Metric tab will be displayed in the XML tab. This
offers the opportunity to learn how these XML specifications work. An experienced user can
then edit the XML specifications if further customization of the metric definition is needed.

2.2. Basic Terms

Caution

This section explains the meaning of basic terms used within this document. Make
sure to have the same understanding of these terms when you read this document.

• Case is used as a synonym for issues, problem reports, bugs, change requests or however you
prefer to call the things administered in Bugzilla.

• Metric : A software metric is any type of measurement that relates to a software artifact.
BugzillaMetrics enables to define a multitude of metrics related to cases administered in
Bugzilla. Based on a metric definition a certain set of cases is evaluated in each time period
and a number is assigned. These numbers assigned for the time periods can then be displayed
as plots in a chart.

Using BugzillaMetrics

3

• Query : BugzillaMetrics allows to save metric definitions. These saved metric definitions are
called queries. Queries can be evaluated directly, or reloaded to the interface and modified by
the user (e.g. by changing the evaluation time period, or changing the base filter).

2.3. The Common Metrics page
The Common Metrics page lists a number of metrics with their name and description. These
metrics are predefined by the BugzillaMetrics administrator. In this page you can choose a
predefined metric, set additionally a number of filters (e.g. for the products of interest), select
the evaluation period and granularity, and then evaluate the metric.

2.3.1. Base Filter
The selections in the upper part of the page enable to filter the cases that are considered for the
evaluation of a metric. This filter is also referred to as base filter since it determines the base
set of cases for the evaluation. All listboxes allow multiple selection. If nothing is selected in a
listbox there will be no filtering for the aspect represented in the listbox. Additionally cases can
be filtered for the values of flags, and it can be filtered using regular expressions.

The widgets displayed in the Base Filter can be configured by the administrator (see
Configuration of the Base Filter Widget).

The filter is applied at the end of each time interval (e.g. each week). Only the cases that match
the filter will be considered for the calculation of a metric value for this time interval.

2.3.2. Grouping Parameter
The grouping parameter can be used to show distinct time series for different partitions of the
evaluated cases. Grouping by product for example will result in a chart with separate plots for
each product. Selecting multiple grouping parameters will result in a chart with a plot for each
combination of the possible values of the grouping parameters.

2.3.3. Evaluation Period and Time Granularity
The evaluation period determines the time span for which values are calculated. By selecting
"always till today" and saving the query, the end date will be adjusted each time the query is
reloaded.

The time granularity determines for which time intervals the data points will be calculated.
Possible values are day, week, month and year. If the time granularity is week, month or year
the calculation will include the whole time interval to which the start and end date belong.

Data points will always be drawn in the chart at the first day of a week, month or year. Monday
is considered to be the first day of a week.

2.4. The My Queries page
This page is to manage and manipulate the saved queries. Queries can be public or private. Private
Queries are visible only for the user who saved the query. Public queries are visible for all users.

Using BugzillaMetrics

4

Users are identified based on the login to Bugzilla itself.

2.4.1. Saving a query

Queries can be saved from each page. When saving a query the user must enter a name and a
description of the query. The query name must be unique. The description of the query as well
as the private/public visibility can be changed later. Public queries can only be changed by the
user who initially saved them. Be aware that changing public queries might confuse other users.

2.4.2. Reloading a query

Saved queries can be evaluated directly as well as reloaded in different ways. A reloaded query
can then be modified.

• The Reload button will reload a query to the page from which it had been saved, e.g. queries
that had been saved from the Common Metrics page will be reloaded to this page. Queries that
had been saved from an XML tab will be reloaded to the XML tab of the My Queries page.
This is due to the fact that an XML specification can contain additional elements that can not
be selected in the graphical user interface.

• The Load XML button will always reload the query into the XML tab of the My Queries page.

2.4.3. Static Links

BugzillaMetrics provides static links for metric results and saved queries.

To generate a static link for one or several saved queries, select these queries and click the button
"Static Link". This will display a dialog with a static link. The given link will automatically
trigger the metric calculation.

Metric results will also be available by a static link. To get the static link to metric results, use
the button "Static Link" at the bottom of the result page. This simplifies to access metrics results
again at a later point in time. Metric results are stored for a time specified by the administrator
(default is 31 days).

2.5. Definition of Metrics in the Graphical User
Interface

While the Common Metrics page offers easy access to a number of predefined metrics, there is
also the possibility to create user-defined metrics without using XML. The metrics that can be
defined with BugzillaMetrics fall in 4 different categories. Each of these categories is reflected
in one of the tab pages:

Count Events This page enables to specify metrics that are based on the occurrence
of certain events (e.g. entering a new case into Bugzilla). The resulting
cases can be weighted, for example by age in days or remaining work
load.

Using BugzillaMetrics

5

Count Until This page enables to specify metrics that are based on counting events
until a specific event occurs, like calculating the number of assignee
changes before resolution.

Interval Length This page enables to specify metrics that are based on the interval length
between two events, like calculating the time from creating a case to
the event of transition of status to processing.

Residence Time This page enables to specify metrics that are based on the total time a
case resides in a certain status until an event occurs, like calculating the
whole time a case resided in assigned status before it was resolved.

In order to define a metric you will first have to choose which of these categories is best for the
definition. The categories are not fully disjoint. Due to the usage of weights in the Count Events
category, is can be possible to define the same metric in two different categories.

Most of the typical metrics of interest can be defined with the graphical user interface. However,
if further features are needed (like user-defined weights, or more calculation steps), this can be
specified using XML.

Tip

If you have a metric in mind but you are not sure which category page to use, start off
with reloading a similar metric from the My Queries page and modify it according
to your needs.

Each of the category pages is split into 4 parts: Base Filter Parameters, Evaluation Time,
Evaluation Specifications, and Chart Properties.

Base Filter Parameters and Evaluation Time are similar to those in the Common Metrics page
(see Base Filter and Section 2.3.3, “Evaluation Period and Time Granularity”).

The Chart Properties allows to specify some characteristics of the resulting chart. The x-axis
of the chart will always be the time-axis and marked according to the selected time period
granularity. The label for the y-axis can be specified by the user as "Range Axis Label". Further
on the result can be displayed as line chart or stacked area chart. Width and Height determine
the size of the resulting chart in pixels.

The core of each metric category page is the Evaluation Specification. The next section will
explain some of the common concepts that are used in all of these metric categories. The
subsequent sections will explain the different category pages.

Tip

The easiest way to get used to the usage of the evaluation specifications is to reload
some of the given metrics from the "My Queries" page and study their definition.

Tip

If you want to find out how a certain metric value was calculated, you can access the
lists of cases that had been considered in each time interval from the HTML result.

Using BugzillaMetrics

6

2.5.1. Common Concepts of the Evaluation
Specifications

This section will explain some concepts that are used in all of the category pages.

The evaluation of a metric in BugzillaMetrics is done in the following steps:

1. For each time interval it is determined which cases are considered for the evaluation. The set
of cases depends on the base filter and event filters specified by the user.

2. A number will be assigned to a case at certain points in time (the so called case value). This
number can be just a default number of 1, e.g. to count the number of bugs. It can be based on
a weight, e.g. the age of the case. Further on it can be determined by counting certain events
during the lifetime of a case, counting the days between two specified events, or counting the
days a case resided in a specified state.

3. A calculation is applied to all case values in a time interval. The case values can for example
be summed up, or their maximum or minimum value can be determined. This calculation
returns a single number for each time interval.

4. Several evaluations based on step 1-3 can be defined within a metric definition . The results
of these evaluations can optionally be combined using arithmetical operations.

5. The results of the evaluations will be plotted in the chart.

The following sections will explain some of the mentioned terms in more detail.

2.5.1.1. Event Filter

Events filters are use to specify the set of cases that are considered by the evaluation. The "event
filters" list box allows multiple selection. If a case matches one of the selected events in the event
filter listbox, it will be considered in the calculation of the metric. The following event filters
are available

Case Creation All cases that had been created within the time interval
and match the BaseFilter will be considered in the
evaluation.

All cases at end of time interval All cases that exist at the end of the time interval and
match the BaseFilter will be considered in the evaluation.

Added cases to basefilter All existing cases that entered the BaseFilter within the
time interval will be considered. Cases that already match
the base filter at time of their creation won't be considered.
Example: The basefilter filters for component1 and an
already existing case is moved to component1 . This case
will then be considered in the evaluation.

Removed cases from basefilter All cases that left the BaseFilter within the time interval
will be considered. Example: The basefilter filters for
component1 and an already existing case that was

Using BugzillaMetrics

7

allocated to component1 is now moved to component2 .
This case will then be considered in the evaluation.

Comment was added All cases where a comment was added will be considered
in the evaluation. The description entered during creation
of the case will not be considered by this event filter.

Transition This event filter can be used to filter for cases that changed
their assignee or their status within a time interval. When
filtering for status changes two sets of status values can
be selected. The first set specifies the status before the
transition ("from"), the second set specifies the status
after the transition ("to"). If there is one or more "from"
elements, the transition must be from one of these values
to another value. If there is one or more "to" elements, the
transition must be to one of these. If no "from" element
is specified, the transition can be from any value, and the
same with "to" elements.

The creation of a case will not be considered as a status
transition. Use the "case creation" event instead.

Additional filters All cases that match the base filter and the selected
additional filters will be considered in the evaluation.
Selecting this option will open a dialog box that enables
the selection of the additional filters.

All filters selected within the event filter listbox are OR-connected.

Caution

The event filter "additional filter" should usually be AND-connected with other
event filters. Otherwise the filter will be checked for any incoming event.

2.5.1.2. Weight

While the usage of the event filters just determines a set of cases that is considered in the
evaluation, weights are used to assign a number to each of these cases. The following weights
are available:

Default Assigns 1 to each case.

Age in days Assigns the age of the case in days.

Original effort estimation accuracy This will assign a a value based on how precise the initial
effort estimation for a case is compared to the actual effort
required to close it. The result will be a floating point
number. It is calculated as:

Using BugzillaMetrics

8

Estimated remaining Effort Assigns the estimated remaining effort of the case.

2.5.1.3. Calculation

A number for each time interval is calculated based on the case values (i.e. the numbers assigned
to the cases considered in a time interval). The following calculations are available:

Sum Sums up the case values. Example: If the "Count Events" Evaluation
and the default weight of 1 is used, this will result in the number of
events considered in the time interval.

Max Returns the maximal value of the case values. Example: If the
"Count Events" Evaluation and the "Age in days" weight is used,
this will result in the maximal age of the cases considered in the time
interval.

Min Returns the minimal value of the case values.

Median Returns the median value of the case values.

Average Returns the arithmetical mean value of the case values.

Count case values Returns the number of case values. If the default weight of 1 is
selected, the result will be equals to using the "sum" calculation.

Count cases Returns the number of cases that contribute a least a case value.
Cases which contribute several case values are counted only once.

2.5.1.4. Additional Evaluation

An additional evaluation can be added and combined with the first evaluation. An example is
the "backlog management index" that is calculated as the ration between incoming and outgoing
cases in a time interval. Its definition on the Count Events page consists of an evaluation that
counts the incoming cases, a second evaluation counts the outgoing cases. Then the result of the
first evaluation is divided by the result of the second evaluation. The following combinations
are available:

Add Adds the results of the first and second evaluation.

Subtract Subtracts the result of the second evaluation from the result of the first
evaluation.

Multiply Multiplies the results of the first and second evaluation.

Divide Divides the results of the first evaluation by the result of the second
evaluation.

Percentage of Calculates the percentage of the first evaluation to the second evaluation.

Don't combine Both evaluations will be shown in the chart as separate plots.

Using BugzillaMetrics

9

2.5.2. Count Events

Here you can specify metrics based on selecting cases on which a certain event had occurred
in a time interval.

To define a metric you have to choose an event filter and you have to choose a weight. The event
filter specifies which case have to be considered in each time interval. Then a number will be
assigned to each case. This number is called case value . The case value is determined by the
weight (see Section 2.5.1.2, “Weight”). In each time interval the end result for the metric will
then be determined by the given calculation, e.g. the sum of the case values or the average of
all case values.

An example metric specified from the page is the number of incoming cases (incoming rate). In
order to count the incoming cases you have to consider the following events:

• A new case is entered into Bugzilla. This is reflected in the "Case Creation" event.

• A case has changed some property like the product or component and is therefore within the
base filter. This event is described by "Added case to base filter".

• A case is reopened. This is described by a "Transition" from the status {"Resolved", "Verified",
"Closed"} to the status "Reopened".

You have to select the corresponding items in the "Event filter" list. The items are implicitly
connected by OR.

Since the incoming cases should just be counted, you can use the default weight. This will assign
1 to each case value. Then the case values are summed up by selecting the calculation "sum".

Reload the metric from the "My Queries" page to see the definition in the "Count Events" page.

Tip

The metrics definitions from the "Count Events" are quite flexible due to the usage
of the weights. If you have a metric in mind that is not related to measuring the
lengths of some time spans in the life time of cases, you should probably start from
the "Count Events" page.

2.5.3. Count Until

Here you can specify metrics based on counting how often some event occurs for a certain case
until a another specific event takes place.

To define a metric you have to choose two event filters denoted as "Event Count" and "Until".
The first one specifies the events that are to be counted in the evaluation. The second event filter
specifies the event on which the counting will stop.

A case will be considered in the evaluation at the point of time when the "Until" event occurs
on this case for the first time. Then the number of occurrences of the event to be counted will

Using BugzillaMetrics

10

be assigned as the case value. In each time interval the end result for the metric will then be
determined by the given calculation, e.g. the maximum of the case values or the average of all
case values.

An example metric specified from the page is the number of assignee changes before resolution.
The first event filter will say that you want to count the number of assignee changes (a transition
occurs on the field assignee). The "Until" filter will say that counting ends when the status
changes to "Resolved", specified as a status transition from the set {"New","Assigned"} into one
of the states {"Resolved", "Verified", "Closed"}.

Reload the metric from the "My Queries" page to see the definition in the "Count Until" page.

2.5.4. Interval Length

Here you can specify metrics based on the length of a time interval between the occurrence of
two specified events.

To define a metric you have to choose two event filters denoted as "From" and "To". The first
one specifies the beginning of the time interval. The second event filter specifies the end of the
time interval.

A case will be considered in the evaluation each time when the "To" event occurs on a case.
Then the time in days between the occurrences of the events will be assigned as the case value. In
each time interval the end result for the metric will then be determined by the given calculation,
e.g. the maximum of the case values or the average of all case values.

More advanced options for the Interval Length Calculation can be configured in the XML metric
specification (see Section 3.5.3, “Interval length between two events”).

An example metric that can be specified from this page is "Age at Resolution". The "From"
event filter will describe the creation of a case. The "To" event filter will say that the interval
ends when the status changes to "Resolved", specified as a status transition from the set {"New",
"Assigned"} into one of the states {"Resolved", "Verified", "Closed"}. Then the calculation will
define that we are interested in the average age of the resolved cases. Reload the metric from the
"My Queries" page to see the definition in the "Interval Length" page.

2.5.5. Residence Time

This evaluation will calculate the total time in days a case stayed in a certain state before an event
occurred. This total time can include more than one time span. It sums up all time spans in which
the case was in the specified state during its life time until the event takes place.

To define a metric you have to define the state of interest by specifying one or multiple status
values. Then you have to define the event after which a case will no longer be considered.

A case will be considered in the evaluation each time the specified event occurs on a case. Then
the total time in days the case had resided in that state will be assigned as the case value. In each
time interval the end result for the metric will then be determined by the given calculation, e.g.
the maximum of the case values or the average of all case values.

Using BugzillaMetrics

11

Tip

If you want to know the residence time of all cases of a certain state in each time
interval, choose "All cases at the end of time intervals" in the event filter.

An example metric that can be specified from this page is "Residence Time in Status New". The
selection of "state" will describe which status values should be considered when summing up
the residence time. For this metric only the status "New" needs to be selected. The event filter
will define when a case will no longer be considered, specified as a status transition from the
set {"New","Assigned"} into one of the states {"Resolved", "Verified", "Closed"}. Reload the
metric from the "My Queries" page to see the definition in the "Residence Time" page.

Caution

To clarify the difference between the "Residence Time" and the "Time Interval"
evaluation let's use the following examples:

• "Residence Time" in state "NEW" until the case status changes to "ASSIGNED".

• "Time Interval" between creation of case and the status change to "ASSIGNED".

The "Residence Time" evaluation will sum up several time spans in which the case
had status "NEW". The "Interval Length" evaluation will only consider the first time
span until the case changed to "ASSIGNED" for the first time. It will not include
later time spans when the case changes back to status "NEW".

12

Chapter 3. Metric Specification
This chapter explains how metrics are specified using XML.

3.1. Root Element
The root element of the metric specification is a metric element. It must contain several child
elements which are explained in the following sections.

<metric>
 <baseFilter>...</baseFilter>
 <groupingParameters>...</groupingParameters>
 <groupEvaluations>...</groupEvaluations>
 <caseValueCalculators>...</caseValueCalculators>
 <evaluationTimePeriod>...</evaluationTimePeriod>
 <timePeriodGranularity>...</timePeriodGranularity>
 <fixedFields>...</fixedFields>
</metric>

3.2. Base Filter
The base filter determines which cases are evaluated by the algorithm. The set of cases is defined
by a state filter element inside the base filter element.

<baseFilter>
 One state filter XML element
</baseFilter>

3.3. Grouping Parameters
Grouping parameters determine how the set of case is split into different partitions that are
separated in the evaluation results. One option is to do no splitting:

<groupingParameters>
 <none />
</groupingParameters>

The other option is to define one or more parameters for fields that are split. The order of the
parameter definitions determines by what parameter the set of cases is split first.

<groupingParameters>
 <fieldGrouping>product</fieldGrouping>
 <fieldGrouping>component</fieldGrouping>
</groupingParameters>

Metric Specification

13

3.4. Group Evaluations
Group evaluations defined how the results from the case value calculation are combined into
metrics. There are two basic types of group evaluations, the details evaluation and calculations.
Each group evaluation has a name that identifies the corresponding entries in the metric result.
Multiple group evaluations can be defined in the groupEvaluations XML element, but they must
have distinct names.

3.4.1. Details Evaluation

The details evaluation shows all case values for a certain case value calculation. In the next
example, a details evaluation for the case value calculator "incoming rate" is shown. The
evaluation has the name "incoming rate", too.

<details name="incoming rate"
 caseValueCalculator="incoming rate" />

3.4.2. Calculations

Calculations use mathematical operations on the results of the case value calculation to calculate
a number for the metric in a flexible way.

Operations based on sets of case values allow accessing the results from the case value
calculation. The following case value set based operations are available:

• Count. Counts the number of case values in the set, which is equal to the set size.

• CountUnique. Counts the number of cases corresponding to case values in the set. Cases
which contribute several case values are counted only once.

• CountBelowThreshold. Counts the number of cases values that are below the threshold
specified in the attribute "threshold".

• CountAboveThreshold. Counts the number of cases values that are above the threshold
specified in the attribute "threshold".

• Sum. Sums up all case values in the set.

• SumBelowThreshold. Sums up the cases values that are below the threshold specified in the
attribute "threshold".

• SumAboveThreshold. Sums up the cases values that are above the threshold specified in the
attribute "threshold".

• Maximum. Returns the biggest case value in the set.

• Minimum. Returns the smallest case value in the set.

• WinsorizedMean. Involves the calculation of the arithmetical mean after replacing given
parts of a probability distribution or sample at the high and low end with the most extreme

Metric Specification

14

remaining values, typically discarding an equal amount of both. The percentage of values that
are replaced at the low end and the high end has to be given in the parameters "lowEnd" and
"highEnd".

These operations need to be parameterized with the identifier of a case value calculation. The
following example sums the values from the case value calculator with the ID "incoming rate".

<sum caseValueCalculator="incoming rate" />

The constant operation is available for using constants in the calculation:

<constant>100.0</constant>

Binary operations can be used to combine results from other operations. The two child elements
are the subcalculations that provide the results that are used as input for the binary operation.
The available binary operations are:

• Add

• Subtract

• Divide

• Multiply

The following example shows the calculation of defect rate, which is the percentage of bugs in
bugs and feature requests. It uses all three different kinds of operations.

<calculation name="defect rate">
 <divide>
 <multiply>
 <constant>100.0</constant>
 <sum caseValueCalculator="bugs" />
 </multiply>
 <sum caseValueCalculator="bugs and enhancements" />
 </divide>
</calculation>

3.5. Case Value Calculations
Case value calculations calculate case values on certain events. In the caseValueCalculators
XML element, multiple case value calculations can be defined, but they must have distinct names.

The following case value calculations are available:

• Count events

• Count number of events until another event happens

• Interval length between two events

• Time a case was in a certain state

Metric Specification

15

They are explained in the following.

3.5.1. Count Events
This calculator calculates a case value on an event specified by an event filter . The calculation
is based on the weight the calculator is parameterized with. The following snippet shows the
XML element for the count events calculator:

<countEvents id="id">
 <event>
 an event filter...
 </event>
 <weight>
 a weight...
 </weight>
</countEvents>

3.5.2. Count number of events until another event
happens

This calculator calculates counts the number of times an event has occurred for a case until
another event happened. Both events can be specified by an event filter . The following snippet
shows the XML element for the calculator:

<countEventsUntil id="id">
 <event>
 an event filter...
 </event>
 <until>
 an event filter...
 </until>
</countEventsUntil>

3.5.3. Interval length between two events
This calculator calculates the length of the time interval in days between two events that happen
on a case. Both events can be specified by an event filter . The following snippet shows the
XML element for the calculator:

<intervalLength id="id">
 <from>
 an event filter...
 </from>
 <to>
 an event filter...
 </to>
 <threshold thresholdInDays="7" useThresholdWeight="true" />
 <considerToEvent>eachTime<considerToEvent>
</intervalLength>

Metric Specification

16

The "threshold" tag is optional. When this tag is used, the counting the length of the time interval
will be stopped if the specified "to" event did not happen within this period. If the attribute
"useThresholdWeight" is false, the number of days since the "to" event will be returned, but at
most the days given in the threshold. If "useThresholdWeight" is true, the value 1 will be returned
for cases that exceed the threshold, otherwise 0.

Caution

Be aware that there is a difference between the "threshold" tag and the
"countBelowThreshold" tag described in section Section 3.4.2, “Calculations” .
Using the "threshold" tag will affect the point in time when the case value is
generated, as well as the case value itself. The "countBelowThreshold" tag will only
affect the aggregation of case values defined in a calculation.

The "considerToEvent" tag is optional. Using this tag enables to specify when case values are
created. Possible values are:

• firstTime: A case value will be created in the evaluation at the point of time when the "To"
event occurs on a case for the first time.

• eachTime: A case value will be created in the evaluation each time the "To" event occurs on
a case. This setting is used as default if the "considerToEvent" tag is not used.

• lastTime: A case value will be created in the evaluation at the point of time when the "To"
event occurs on a case for the last time.

3.5.4. Time a case was in a certain state
This calculator calculates the time in days a case was in a certain state before the time point of
a certain event. At such an event, a case value is calculated. The event can be specified by an
event filter and the state can be specified by a state filter . The following snippet shows the
XML element for the calculator:

<stateResidenceTime id="id">
 <state>
 an state filter...
 </state>
 <event>
 an event filter...
 </event>
 <considerEvent>eachTime</considerEvent>
</stateResidenceTime>

The "considerEvent" tag is optional. Using this tag enables to specify when case values are
created. Possible values are:

• firstTime: A case value will be created in the evaluation at the point of time when the specified
event occurs on a case for the first time.

• eachTime: A case value will be created in the evaluation each time the specified event occurs
on a case. This setting is used as default if the "considerEvent" tag is not used.

Metric Specification

17

• lastTime: A case value will be created in the evaluation at the point of time when the specified
event occurs on a case for the last time.

3.6. Evaluation Time Period
The evaluation time period element defines the time period that is evaluated by the algorithm.
Currently, only a fixed time period with a start and an end date can be defined. They dates have
to be specified in the format "YYYY-MM-DD". An example is given below:

 <evaluationTimePeriod>
 <timePeriod>
 <start>2006-08-14</start>
 <end>2006-08-27</end>
 </timePeriod>
 </evaluationTimePeriod>

3.7. Time Period Granularity
The time period granularity defines how the evaluation time period is split into the different
intervals that are evaluated in the group evaluation phase. Possible values are day, week, month,
and year. An example for a month time granularity is given here:

 <timePeriodGranularity>
 <month />
 </timePeriodGranularity>

3.7.1. User-defined Time Period Granularity

Time periods can also be defined by the user to adjust metrics to release dates or business years.

 <timePeriodGranularity>
 <customGranularity>
 <aggregateAt>2006-01-15</aggregateAt>
 <aggregateAt>2006-08-16</aggregateAt>
 <aggregateAt>2006-12-03</aggregateAt>
 <aggregateAt>2007-10-03</aggregateAt>
 </customGranularity>
 </timePeriodGranularity>

3.8. Fixed Fields
In the fixed fields element, the fields for which the calculation of correct historic values should be
disabled and the current values should be used instead can be specified. In the following example,
the product and component fields are fixed.

 <fixedFields>
 <field>component</field>
 <field>product</field>

Metric Specification

18

 </fixedFields>

3.9. Weights
Weights are used in the count events case value calculator to calculate a value for a case state.
The following weights are available:

• Default (XML Element: <default />). Returns a fixed "1" as result for a case state.

• Age (XML Element: <ageInDays />). Returns the age of the case in days.

• Days beyond deadline (XML Element: <daysBeyondDeadline />). Returns the time in days
that passed since the deadline of a case. If the deadline is not reached, the result will be
negative. If a case has no deadline, the result will be 0. This weight is usually used with filtering
the "beyondDeadline" field.

• Original effort estimation accuracy (XML Element: <originalEffortEstimationAccuracy /
>). Calculates the original effort estimation by this formula: 1 - min(1,
abs(originalEstimatedEffort - actualEffort) / originalEstimatedEffort)

• Actual Effort (XML Element: <actualEffort />). Returns the hours worked an a case.

• Original estimated effort (XML Element: <originalEstimatedEffort />). Returns the original
estimated effort.

• Estimated remaining effort (XML Element: <estimatedRemainingEffort />). Returns the
estimated remaining effort.

• Current estimated effort (XML Element: <currentEstimatedEffort />). Returns the current
estimated effort (i.e. the sum of the actual effort and the estimated remaining effort).

• Complete (XML Element: <complete />). Returns the percentage complete of a case (i.e. the
actual effort divided by the current estimated effort).

• gain (XML Element: <gain />). Returns the original estimated effort minus the current
estimated effort.

• CommentCount (XML Element: <commentCount />). Returns the number of comments for
a case.

• Blocks (XML Element: <blocks />). Returns the number of cases that are directly blocked
by a case.

• Depends on (XML Element: <dependsOn />). Returns the number of cases to which a case
directly depends on.

• Map field values (XML Element: <mapping />). The map field values weight maps a finite set
of values from one field to numbers. It can be defined by defining the result for each value. A
configuration that shows how such a mapping might look for the priority field is shown below.

<mapping field="priority">
 <map from="P1" to="4.00" />

Metric Specification

19

 <map from="P2" to="3.00" />
 <map from="P3" to="2.00" />
 <map from="P4" to="1.00" />
</mapping>

3.10. Event Filters
Event filters define which events are accepted by case value calculators. There are several simple
event filters and composed event filters that combine other event filters. The following simple
event filters are available:

• Case creation (XML Element: <create />). Filters case creation events.

• End of time interval (XML Element: <endOfTimeInterval />). Filters end of time interval
events based on the selected time granularity (e.g. week or month). This is very useful to
trigger calculations for each case and each time interval.

• Entering of base case set (XML Element: <enterBaseFilter />). Filters the entering of a case
into the base set.

• Leaving of base case set (XML Element: <leaveBaseFilter />). Filters the leaving of a case
from the base set.

• Adding a comment (XML Element: <commentAdded />). Filters the event that an additional
comment was added to a case. The description entered during creation of the case will not be
considered by this event.

• State based filtering (XML Element: <stateFilter />). This filter contains a state filter and
delegates the filtering to the case filter. This looks like the following:

 <stateFilter>
 some state filter...
 </stateFilter>

Caution

The "state filter" should usually be AND-connected with other event filters.
Otherwise the filter we be checked for any incoming event.

• Field value transitions (XML Element: <transition />). Field value transition filters react on
changes of case fields. The field that changes can be specified. Any of the fields given in
Table 3.1, “Available Fields” that has historic values can be used.

If there is one or more "from" elements, the transition must be from one of these values
to another value. If there is one or more "to" elements, the transition must be to one
of these. If no "from" element is specified, the transition can be from any value, and
the same with "to" elements. In the following example, changes of the "status" field of
a case are filtered. The changes must be from any of the states in the set containing
"RESOLVED","VERIFIED","SHIPPED","CLOSED" to the state "REOPENED".

Metric Specification

20

<transition field="status">
 <from>RESOLVED</from>
 <from>VERIFIED</from>
 <from>SHIPPED</from>
 <from>CLOSED</from>
 <to>REOPENED</to>
</transition>

• Field value transitions filtered with regular expressions (XML Element:
<transitionRegExp />). This filter works like the "transition" filter, but the "to" and "from"
elements are evaluated as regular expressions (non-case-sensitive).

• and/or: The combining event filters are the "or" and the "and" event filter. They can be used
to combine other event filters. The following example shows an "or" event filter combining a
"create", "transition" and "enterBaseFilter" event filter.

<or>
 <create />
 <transition field="status">
 <from>RESOLVED</from>
 <from>VERIFIED</from>
 <from>SHIPPED</from>
 <from>CLOSED</from>
 <to>REOPENED</to>
 </transition>
 <enterBaseFilter />
</or>

3.11. State Filters
State filters check whether the case of a state matches what is defined in the filter or not. There
are three basic types of state filter: a null state filter, field value state filters and composed state
filters. The "null" state filter is the simplest type of state filter. It accepts all cases.

<none />

The "value" state filter accepts cases that have a specified value in a field. The filter in the next
example accepts cases of the product with the ID "1". For entities that have an id (e.g. products
or assignees) this id will be used, otherwise the value itself will be used in the filter (see fields).

<value field="product">1</value>

The "valueRegExp" state filter accepts cases where the given regular expression matches the
value of a field. BugzillaMetrics uses Java's regular expression syntax and case-insensitive
matching. More information about regular expressions can be found here [http://www.regular-
expressions.info/reference.html]. The filter in the next example accepts cases of all products
whose name begins with "Hello".

<valueRegExp field="product">^Hello</valueRegExp>

http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html
http://www.regular-expressions.info/reference.html

Metric Specification

21

The "flagValue" state filter accepts cases where the flag given in the attribute "field" has the
given flag value. Possible flag values are "+", "-", "?" and "notSet". "notSet" will match all cases
where no value for the flag is entered. The filter in the next example accepts cases where the
flag "review" has the value "?".

<flagValue field="review">?</flagValue>

The "not" state filter can be used to negate a "value", "valueRegExp", or "flagValue" state filter.

The "and" and "or" state filters combine state filters. They can themselves be combined by "and"
and "or", too. The filter in the next example selects all bug cases from product 1.

<and>
 <value field="product">1</value>
 <value field="type">bug</value>
</and>

3.12. Fields
The following fields can be used in the specification:

Table 3.1. Available Fields

Field Historic values available Values used in "value" state
filter

actualEffort y decimal

assignee y user ID

beyondDeadline y true/false

blocks y int

cc y user ID (multi-valued field)

ccCount y int

classification n classification ID

comment y string

comments * y string

commentCount y int

commenter y user ID

commenters * y user ID

complete y decimal (percentage)

component y component ID

currentEstimatedEffort y component ID

creationTimeStamp y yyyy-mm-dd

deadline y yyyy-mm-dd

deltaTimestamp n yyyy-mm-dd

Metric Specification

22

Field Historic values available Values used in "value" state
filter

dependsOn n int

dependsOnId * n bug id

gain y decimal

id n bug ID

keywords y string

operatingSystem y string

originalEstimatedEffort y decimal

priority y string

product y product ID

qaContact y user ID

remainingEffort y decimal

reporter n user ID

reportingPlatform y string

resolution y string

severity y string

status y string

statusWhiteboard y string

summary y string

targetMilestone y string

type y bug/enhancement

version y string

* These fields are multi-valued. A filter on these fields will be matched with all existing entries
(e.g. the comments or commenters of a case at a considered point in time). For performance
reasons, these fields can NOT be filtered with a "transition" or "transitionRegExp" filter.

Fields with no historic values in the Bugzilla database are per default fixed field s. The third
column in the table determines which values are used in the specification of the filters of a metric
specification.

23

Chapter 4. Chart Specification
This section explains hows charts can be specified using XML.

The root element of the chart specification is called "chartConfiguration". It contains several
child elements that define what should be included in the chart:

<chartConfiguration>
 <title>The Title of the chart</title>
 <rangeMarker>...</rangeMarker>*
 <domainMarker>...</domainMarker>*
 <chart>...</chart>+
 <width>1024</width>
 <height>768</height>
</chartConfiguration>

The title element contains a string that is used as title for the chart. There can be zero or more
domainMarker elements. They contain markers for the domain axis. There can be zero or more
rangeMarker elements. They contain markers for the range axis. Both marker elements are
explained below. There can be one or more chart elements. They contain the definitions for the
sub charts that are included in the chart and are explained below. The width and height elements
contain positive integers for the definition of the image size.

4.1. Domain Marker Elements
Domain marker elements define markers on the domain axis that can be used to mark certain
dates. A vertical line that intersects the y-axis at a specified date will be drawn into the chart.

<domainMarker>
 <date>2006-01-05</date>
 <label>Milestone Build 3</label>
</domainMarker>

The date element of a domain marker contains the date of the marker in the format "YYYY-MM-
DD". The label element of a domain marker contains the text that is displayed at the marker.

4.2. Range Marker Elements
Range marker elements define markers on the range axis that can be used to mark certain
thresholds. A horizontal line that intersects the x-axis at a specified threshold value will be drawn
into the chart.

<rangeMarker>
 <value>1</value>
 <label>test</label>
</rangeMarker>

The value element defines the threshold value. The label element of a range marker contains the
text that is displayed at the marker.

Chart Specification

24

4.3. Chart Elements
Chart elements contain the definition of the sub charts that are displayed.

<chart>
 <calculation [cumulate="true"]>...</calculation>+
 <rangeAxisLabel>Label with the range axis description
 </rangeAxisLabel>
 <type>...</type>
</chart>

There must be one ore more calculation elements. Each contains the name of a group calculation
from the metric that is used to supply the data for the chart. Optionally a calculation element
can have the boolean attribute cumulate. If cumulate is set to "true", the resulting chart will be
cumulated, i.e. the values of all previous data points will be added to the value of a given data
point. The default setting is cumulate="false".

The rangeAxisLabel element contains the text for the label that is displayed at the range axis of
the sub charts. The type element contains the type of the chart. "line" and "stacked" are possible.

25

Chapter 5. Administration of
BugzillaMetrics

5.1. Installation
Installing BugzillaMetrics requires the following installation steps:

1. Database Configuration (create BugzillaMetrics custom tables and grant read-only access to
the Bugzilla database)

2. Deploy BugzillaMetrics into a servlet container like Tomcat. This can be done either from the
file release (see Deployment from the File Release) or from the source code (see Deployment
from the Source Code).

3. Adjust the configuration settings of BugzillaMetrics.

If you have problems with the installation send an e-mail to the mailing list
mailto:bugzillametrics-users@lists.sourceforge.net and describe your problem. Please state your
bugzilla version, the version of your database, and the version of your application server (e.g.
tomcat 5.5).

5.1.1. Database configuration

BugzillaMetrics works on a Bugzilla database from version 2.19.3 up to a least 4.0

BugzillaMetrics uses three custom tables to store common metrics, user-defined metric queries,
and metric results. The tables can be placed in the Bugzilla database or in a separate database.

1. Create a database user for BugzillaMetrics

2. The default status workflow has changed in Bugzilla 4.0.
See http://bugzillaupdate.wordpress.com/2010/07/06/bugzilla-4-0-has-a-new-default-status-
workflow/. You have to setup the metric definitions depending on the status workflow of your
Bugzilla installation.

• If you use the status workflow of Bugzilla before version 4.0:

Use BugzillaMetricsFrontend/src/setup_BugzillaMetricsDB_BugzillaBeforeVersion4.sql
[http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/
bugzilla_metrics_frontend/trunk/src/
setup_BugzillaMetricsDB_BugzillaBeforeVersion4.sql] to create the custom tables in the
preferred location.

• If you use the status workflow introduced in Bugzilla version 4.0:

Use BugzillaMetricsFrontend/src/setup_BugzillaMetricsDB_BugzillaSinceVersion4.sql
[http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/

mailto:bugzillametrics-users@lists.sourceforge.net
http://bugzillaupdate.wordpress.com/2010/07/06/bugzilla-4-0-has-a-new-default-status-workflow/
http://bugzillaupdate.wordpress.com/2010/07/06/bugzilla-4-0-has-a-new-default-status-workflow/
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaBeforeVersion4.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaBeforeVersion4.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaBeforeVersion4.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaBeforeVersion4.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaSinceVersion4.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaSinceVersion4.sql

Administration of BugzillaMetrics

26

bugzilla_metrics_frontend/trunk/src/
setup_BugzillaMetricsDB_BugzillaSinceVersion4.sql] to create the custom tables in the
preferred location.

3. Make sure that access rights for the BugzillaMetrics database user are set accordingly.
BugzillaMetrics needs only read access to the Bugzilla database and read/write access to its
custom tables.

5.1.2. Deployment from the File Release

The following description shows how to deploy BugzillaMetricsFrontend from the file release
into a tomcat installation. It requires to run tomcat at least with JAVA JRE 1.5.0_07 .

1. Download the file release [http://sourceforge.net/project/showfiles.php?group_id=197170] .

2. Unzip the file into <tomcathome>/webapps/

3. Adjust the configuration settings . The configuration files are placed in <tomcathome>/
webapps/BugzillaMetricsFrontend/WEB-INF/

4. Restart tomcat

5.1.3. Deployment from the Source Code

The following description shows how to deploy BugzillaMetricsFrontend from the source code
into a tomcat installation.

It requires at least Eclipse 3.5 with WebTools Platform 2.0 and the Google plugin installed.
You need to separately install the Google Web Toolkit [http://code.google.com/webtoolkit/
versions.html]. Please use GWT version 2.2 or later.

1. Get the BugzillaMetrics, BugzillaMetricsFrontend, and BugzillaMetricsDocumentation
project from http://bugzillametrics.svn.sourceforge.net/svnroot/bugzillametrics [http://
bugzillametrics.svn.sourceforge.net/svnroot/bugzillametrics]

2. Set the variable "BugzillaMetricsLib" to the directory BugzillaMetrics/modules/core/lib (see
Project -> Properties -> Java Build Path -> Libraries -> Add Variable).

3. Adjust the configuration settings . The configuration files are in the BugzillaMetricsFrontend
project in the folder war/WEB-INF/

4. Open the package explorer in Eclipse (Window -> Show View -> Java -> Package Explorer).
Select the project BugzillaMetricsFrontend, right-click to open the context menu, then click
"Google -> GWT Compile". This will generate the client side javascript code. Press F5 to
refresh the package explorer.

5. Open the server view in Eclipse. (Window -> Show View -> Other -> Servers -> Server)

6. Right click in the server view to open the context menu. Choose New->Server and define your
server installation on localhost. The following dialog shows an example configuration.

http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaSinceVersion4.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics_frontend/trunk/src/setup_BugzillaMetricsDB_BugzillaSinceVersion4.sql
http://sourceforge.net/project/showfiles.php?group_id=197170
http://sourceforge.net/project/showfiles.php?group_id=197170
http://code.google.com/webtoolkit/versions.html
http://code.google.com/webtoolkit/versions.html
http://code.google.com/webtoolkit/versions.html
http://bugzillametrics.svn.sourceforge.net/svnroot/bugzillametrics
http://bugzillametrics.svn.sourceforge.net/svnroot/bugzillametrics
http://bugzillametrics.svn.sourceforge.net/svnroot/bugzillametrics

Administration of BugzillaMetrics

27

7. Choose "Add and remove projects..." in the context menu of the server view and add the
BugzillaMetricsFrontend web module.

Administration of BugzillaMetrics

28

8. Choose "Publish" in the context menu of the server view.

Tip

You can also run BugzillaMetrics directly from Eclipse. Open the context menu of
the package explorer and select "Run As -> Web Application". This will run the
application in the GWT Hosted Mode.

5.2. Configuration Settings of BugzillaMetrics
The configuration settings of BugzillaMetrics are placed in the file settings.xml. It is in the WEB-
INF directory. The XML tags of this file are explained in the following. Typically you only have
to adjust the settings given in the tags "bugzillaDB", "metricsDB", "bugzilla" and "frontend".

• bugzillaDB: Connection settings to the Bugzilla database are given in the attributes database,
user, password and host of this tag.

• metricsDB: Connection settings to the database containing the BugzillaMetrics custom tables.
In case that the custom tables are placed in the Bugzilla database, the settings are the same
like in the tag "bugzillaDB".

• bugzilla: The attributes in this tag characterize the underlying Bugzilla installation.

Administration of BugzillaMetrics

29

• bugzillaVersion: Version number of your Bugzilla installation. This enables
BugzillaMetrics to adapt itself to the specific database scheme. State a version number a.b.c
as a*10000+b*100+c e.g. Version 2.19.3 should be specified as 21903

• useClassifications: This setting indicates whether the classifications are used. (see
classifications [http://www.bugzilla.org/docs/3.0/html/classifications.html]).

• frontend: The attributes in this tag define the behaviour of the graphical user interface.

• useLoginCheck: This setting indicates whether a login check should be
performed before entering BugzillaMetrics. This will check if the user
is logged in to Bugzilla based on Bugzilla's login cookie (see notes
on authentication [http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/
index.cgi?action=single&version=3.0&view=View+schema#notes-authentication]). Using
the login check requires that BugzillaMetrics runs in the same domain as Bugzilla (see the
cookie specification [ftp://ftp.isi.edu/in-notes/rfc2965.txt]).

• bugtrackerURL: The base URL of your Bugzilla installation. If the login check fails, the
user will be pointed to this URL to login into Bugzilla. Additionally this URL will be used
to links to bug lists from the metric results.

• expirationTime; This setting defined how many days metric results are kept in the database
and can be accessed by a static link.

• dataProvider: This setting only needs to be changed if BugzillaMetrics is used on a
different bugtracking system than bugzilla. The setting denotes the fully qualified class
name of a "DataProvider" class that provides methods to retrieve base data like the list
of available products and versions from the bugtracking database. The default setting is
"org.qmetric.frontend.server.dataProvider.bugzilla.DataProviderForBugzilla"

• useBugzillaLogin: This setting indicates whether the login check should happen against
Bugzilla. The default value is true. If set to false, BugzillaMetrics will use authentication of
the servlet container, via the HttpServletRequest.getRemoteUser() method. This is useful
when an external authentication mechanism is needed. It is preferred to use Bugzilla because
it requires a much simpler setup. Refer to the documentation of your servlet container for
details on setting up servlet authentication.

If using servlet authentication, BugzillaMetrics will associate queries with the return value
of getRemoteUser(). In case you installed BugzillaMetrics in version 0.9.5 or earlier then
you have to update the BugzillaMetrics database. This can be done with a sql command:

use database bugzillametrics;
 alter table queries change user user varchar(255);

As a simple example using Tomcat and an LDAP server, this is added to the <web-app>
section of WEB-INF/settings.xml:

<security-constraint>
 <web-resource-collection>

http://www.bugzilla.org/docs/3.0/html/classifications.html
http://www.bugzilla.org/docs/3.0/html/classifications.html
http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/index.cgi?action=single&version=3.0&view=View+schema#notes-authentication
http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/index.cgi?action=single&version=3.0&view=View+schema#notes-authentication
http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/index.cgi?action=single&version=3.0&view=View+schema#notes-authentication
http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/index.cgi?action=single&version=3.0&view=View+schema#notes-authentication
ftp://ftp.isi.edu/in-notes/rfc2965.txt
ftp://ftp.isi.edu/in-notes/rfc2965.txt
ftp://ftp.isi.edu/in-notes/rfc2965.txt

Administration of BugzillaMetrics

30

 <web-resource-name>Entire Application</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>

 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Bugzilla Metrics Frontend</realm-name>
</login-config>

<security-role>
 <role-name>employee</role-name>
</security-role>

<security-role>
 <role-name>contractor</role-name>
</security-role>

And then tomcat's conf/server.xml file is modified to use ldap:

<Engine name="Catalina" defaultHost="localhost">
 <Realm className="org.apache.catalina.realm.JNDIRealm"
 debug="99"
 connectionURL="ldap://yourldapserver.com:389"
 userPattern="userid={0},ou=People,
 ou=Intranet,dc=domain,dc=com"
 userRoleName="userGroup" />
 <Host name="localhost" appBase="webapps"
 unpackWARs="true" autoDeploy="true"
 xmlValidation="false" xmlNamespaceAware="false" />
</Engine>

• calculationCore: This setting only needs to be changed if BugzillaMetrics should be used with
evaluations on SCM systems or it is used on a different bugtracking system than bugzilla. This
tag does contain the attribute "coreConfiguration". It denotes the fully qualified class name
of a "CoreConfiguration" class that is used to configure the metric calculation component of
BugzillaMetrics. The default setting is "org.qmetric.bugzilla.CoreConfigurationBugzilla" in
order to run BugzillaMetrics on a Bugzilla database.

• frontendPresentationSettings: Some options available in the graphical user interface can be
configured here, e.g. which listboxes are displayed in the "base filter" section of the frontend.
The possible settings are described in detail in the next section.

The file logging.properties is used to configure which log messages are generated
by BugzillaMetrics. The logging mechanism of BugzillaMetrics is based on Log4j

Administration of BugzillaMetrics

31

(see introduction to log4j [http://logging.apache.org/log4j/1.2/manual.html]). The setting
log4j.appender.A1.file=bugzilla_metrics.log can be used to specify the folder where the log file
should be placed.

5.2.1. Frontend Presentation Settings
The Base Filter Widget displayed on the frontend can be configured by the administrator. The
configuration is given in the tag baseFilter contained in the file settings.xml. The following
picture shows the base filter widget with markers for the different types of elements that can
appear in the widget.

The corresponding parts of the settings file are given in the following:

<baseFilterConfiguration>
 <frontendPresentationSettings>
 <baseFilter>
 <enumList title="Classification"
 field="classification"
 width="90px" />
 ...
 <space width="20px" />
 <groupingParametersListBox title="Grouping by:"
 width="100px">
 <groupingParameter>product</groupingParameter>
 ...
 <groupingParameter>assignee</groupingParameter>
 </groupingParametersListBox>
 </baseFilterRow>
 <baseFilterRow>
 <enumList title="Status" field="status" width="130px" />
 ...
 <verticalPanel width="160px">
 <checkBox title="Only beyond deadline"
 field="beyondDeadline" />
 ...
 <flagDropDown title="Flag:" width="100px" />

http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html

Administration of BugzillaMetrics

32

 <regExpDropDown title="" width="100px">
 <fields width="100px">
 <field>assignee</field>
 ...
 <field>targetMilestone</field>
 </fields>
 </regExpDropDown>
 </verticalPanel>
 </baseFilterRow>
 </baseFilter>
 ...
</frontEndPresentationSettings>

The tags of this file are explained in the following:

baseFilterRow The base filter widget is composed of these rows. It
contains at least 2 rows.

enumList This list enables a multiple selection in a list of
enumerated values. The field name is given in the
attribute "field". Each field may only appear once. The
following fields can be used: classification, component,
operatingSystem, priority, product, reportingPlatform,
resolution, severity, status, targetMilestone, type, version.

groupingParametersListBox This list contains the available grouping parameters.

verticalPanel A verticalPanel is used to aggregate elements like
"checkBox", "flagDropDown" and "regExpDropDown"
and displays them in vertical order.

space This element can be used to insert empty space between
widgets. If this tag appears below a "baseFilterRow" use
the attribute "width" to define the width of the widget. If it
appears below a "verticalPanel" use the attribute "height"
to define the height of the empty space.

checkBox This element can be used to define a filter for
fields with boolean values. Additionally the attribute
"checkedValue" can be used to define a value that is used
instead of "true" if the checkbox is selected.

flagDropDown This element enables to define filters for flags. The
attribute "width" defines the width of the first drop down
list with the available flag types.

regExpDropDown This element enables to define filters based on regular
expressions. The attribute "width" defines the width of the
textbox for the expression. The attribute "width" of the
tag "fields" defines the width of the field drop down list.

Administration of BugzillaMetrics

33

The available fields are also defined here. Any field with
id or string values can be used here.

Furtheron the events displayed in the Count Events, Count Until, Interval Length, and Residence
Time category, and weights displayed on the Count Events page can be configured. These settings
are typically needed if BugzillaMetrics is used with the software configuration management
extension, and related events and weight should also be visible on the frontend.

5.2.2. Common Metrics

The metrics displayed on the "Common Metrics" tab page of the BugzillaMetrics frontend can
be edited by changing the entries in the metrics database table. The typical way to do this would
be to save your query from the frontend, then use an SQL statement like the following to copy
this query into the metrics table.

INSERT INTO metrics SELECT name, description, query AS metric,
chart from queries where id=1234

5.2.3. Evaluation of custom fields

BugzillaMetrics supports the evaluation of custom fields defined in your Bugzilla installation.
The following types of custom fields can be evaluated: FreeText, SingleSelect, MultiSelect,
LargeTextbox, and DateTime.

To enable the evaluation of a custom field, an entry must be added to the file metric.xsd. The
file is contained in \BugzillaMetricsFrontend\WEB-INF\lib\BugzillaMetrics.jar in the folder \org
\bugzillametrics\core. (The jar-file can be opened as zip to edit the file.) The application does
not need to be recompiled.

For a custom field called "cf_myCustomField" the following line must be added for the
simpleType "field":

<xs:enumeration value="cf_myCustomField"/>

Caution

These restrictions apply due to the way Bugzilla stores historic values in the
database: If a legal values of a field of type single-select or multi-select had been
renamed by the administrator, the historic values of this field can not correctly be
retrieved. If a field of type multi-select has a legal value that contains the substring
", " historic values can not correctly be retrieved.

5.2.3.1. Display filter for custom fields in the web front end

Filters for custom fields can also be displayed in the Base Filter Widget of the web front end.
Fields of the type FreeText, LargeTextbox, and DateTime can be displayed in an element of type
regExpDropDown. Just add the field name to the list of available fields. Fields of type Single-
Select and Multi-Select can be displayed in an element of type enumList (see Configuration of
the Base Filter Widget).

Administration of BugzillaMetrics

34

5.3. Environment configuration
If you have a rather large Bugzilla database (>20000 bug entries), consider to adjust the following
configuration settings.

5.3.1. MySQL

Make sure that the max_allowed_packet parameter of MySQL is at least 16MB. This setting can
be changed in the configuration file /etc/my.cnf (See http://dev.mysql.com/doc/refman/6.0/en/
program-variables.html).

5.3.2. Java Heap Space

Increase the java heap space of the servlet container. For example add the following option to
your Tomcat startup script.

CATALINA_OPTS=="-Xmx2048m"

5.3.3. Tomcat Session Timeout

On a large Bugzilla database, the session timeout may be too low for some metric calculations.
To increase the timeout value in Tomcat, please locate the following section in [Tomcat_home]/
conf/web.xml:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

The timeout value is specified in minutes. Restart Tomcat after modifying the file, so the changes
can take effect.

5.3.4. Configuring ProxyPass on an Apache Web Server

The ProxyPass directive allows remote servers to be mapped into the space of the local server;
the local server does not act as a proxy in the conventional sense, but appears to be a mirror of
the remote server.

If BugzillaMetrics is accessed using the ProxyPass directive, the timeout for the proxy request
must be redefined. Otherwise a metric calculation may be timed out before the result is available,
since some BugzillaMetrics calculation can take several minutes dependent on the size of the
Bugzilla database. An example configuration is given in the following:

RewriteEngine on
RewriteRule ^/BugzillaMetrics$ /BugzillaMetrics/ [R]

#Timeout for proxy requests in seconds.
ProxyTimeout 3600
Timeout 3600

http://dev.mysql.com/doc/refman/6.0/en/program-variables.html
http://dev.mysql.com/doc/refman/6.0/en/program-variables.html

Administration of BugzillaMetrics

35

ProxyPass /BugzillaMetrics/
 http://localhost:8080/BugzillaMetricsFrontend/
 keepalive=on
ProxyPassReverse /BugzillaMetrics/
 http://localhost:8080/BugzillaMetricsFrontend/

Adjusts the domain string / path of the session cookie
ProxyPassReverseCookieDomain
 http://localhost:8080/BugzillaMetricsFrontend/
 public.example.com
ProxyPassReverseCookiePath / /BugzillaMetrics/

5.4. Miscellaneous

5.4.1. Using BugzillaMetrics with a database other than
MySQL

BugzillaMetrics can be configured to run on a database other than MySQL. You have to find a
JDBC driver for your database. The JDBC driver for PostgreSQL can for example be downloaded
from here [http://jdbc.postgresql.org/download.html]. Copy the jar file of the JDBC driver into
the directory /WEBINF/lib. Then add the attributes "jdbcdriver" (the class name of the jdbc driver
class) and "subprotocol" (e.g. postgres or oracle) to the connection settings of the database given
in the file settings.xml. Example:

<bugzillaDB
 database="bugzilla"
 user="bugmetrics"
 password="password"
 host="localhost"
 jdbcdriver="org.postgresql.Driver"
 subprotocol="postgres"
 />

5.4.2. ValueNotResolvedException

This exception can be thrown during a metric evaluation and will be reported in the
bugzilla_metrics.log file. It is caused by inconsistencies of the Bugzilla database. Bugzilla holds
the change history in a table "bugs_activity". This table does not use IDs to refer to entities
like products, assignees, etc. Instead the names of these entities are used. So the entries in the
"bugs_activity" table must be resolved to the ids. Renaming an entity e.g. a product cause an
inconsistency, since historic changes are no more associated with this entity.

http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/download.html

36

Chapter 6. Integration with CVS /
Subversion

This chapter describes the integration of data from software configuration management (SCM)
systems into BugzillaMetrics. It can be used in a software development project that uses
Bugzilla and a SCM system like CVS or Subversion with bug references in commit messages.
These references must be integrated into Bugzilla with the external tool SCMBug [http://
www.mkgnu.net/?q=scmbug] Under these circumstances the user of BugzillaMetrics can specify
metrics that combine information from Bugzilla and from SCM systems. For these purposes the
SCM integration provides additional BaseFilter, Events and Weights (see Section 6.2, “Metric
specification involving the SCM - Integration”).

Before SCM systems can be analyzed, the data must first be imported into a separate database
that enables the metric analyzes in an efficient way. This is described in Section 6.1.4, “Import
SCM data” . The required installation steps are described in the next section.

6.1. Installation
Installing SCM integration requires the following installation steps:

1. Create a new database for imported data from SCM systems and grant write access to it (see
Section 6.1.1, “SCM Database configuration”).

2. Install additional tools that are needed by the import module (see Section 6.1.2, “Needed
additional tools”).

3. Adjust the configuration settings for the import of CVS / Subversion data (see Section 6.1.3,
“Configuration Settings”).

6.1.1. SCM Database configuration

The SCM integration works on a separate database that can be created in the following three
steps:

1. Create a database user for the SCM integration or use the same user who was generated during
the installation of BugzillaMetrics.

2. Use scm_sql_configuration.sql [http://bugzillametrics.svn.sourceforge.net/viewvc/
checkout/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/
scm/sql/scm_sql_configuration.sql] to create the scm database in the preferred location.

3. Make sure that access rights for the scm database user are set accordingly. The SCM
integration needs read and write access to the scm database.

6.1.2. Needed additional tools

Make sure that you have installed the following tools:

http://www.mkgnu.net/?q=scmbug
http://www.mkgnu.net/?q=scmbug
http://www.mkgnu.net/?q=scmbug
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/sql/scm_sql_configuration.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/sql/scm_sql_configuration.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/sql/scm_sql_configuration.sql
http://bugzillametrics.svn.sourceforge.net/viewvc/*checkout*/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/sql/scm_sql_configuration.sql

Integration with CVS / Subversion

37

• The Unix command line tool diff: Unix operating systems should have installed this tool
by default. If this is not the case for your Unix system then install GNU diffutils. Users
of Windows ™ - operating systems require a Windows ™ - porting of diff. This is, for
example, available in the SourceForge-Project UnxUtils and can be downloaded at http://
unxutils.sourceforge.net.

• A script extracted from Scmbug which translates user names between Bugzilla
and SCM systems. Download it from http://bugzillametrics.svn.sourceforge.net/viewvc/
bugzillametrics/scmbug_user_name_translation/trunk/UserNameTranslation/
UserNameTranslation.pm

6.1.3. Configuration Settings
A file named "looging.properties" is used to configure logging
during the import process. Download a template of this file from
here [http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/
trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/logging.properies]. Usually you
only have to adjust the path to the logging file (log4j.appender.A1.file).

A file named "settings.xml" is used to configure the import from
CVS or Subversion". Download a template of this file from
here [http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/
trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/settings.xml]. Configure the
following items in your settings.xml file:

• scmDB: Connection settings to the scm database are given in the attributes database, user,
password and host of this tag.

• scm:

• scmSourceLocation:

• scmRootPath: Location of the folder that contains the SCM repository.

• cvsAccessType: Access type of CVS system (local, pserver)

• projectName: Name of the scm project that should be imported.

• scmImportWorkingDirectory:

• absoluteWorkingDirecoryPath: Path to a local folder that should contain the working files
of the import module.

• relativeWorkingDirectoryTmpPath: Relative path in your working directory for
temporary files.

• relativeWorkingDirectoryLogPath: Relative path in your working directory for log files.

• relativeWorkingDirectoryCheckoutPath: Relative path in your working directory for the
local working copy of the import module.

• scmImportEventCheckHeuristics:

http://unxutils.sourceforge.net
http://unxutils.sourceforge.net
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/scmbug_user_name_translation/trunk/UserNameTranslation/UserNameTranslation.pm
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/scmbug_user_name_translation/trunk/UserNameTranslation/UserNameTranslation.pm
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/scmbug_user_name_translation/trunk/UserNameTranslation/UserNameTranslation.pm
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/logging.properies
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/logging.properies
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/logging.properies
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/settings.xml
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/settings.xml
http://bugzillametrics.svn.sourceforge.net/viewvc/bugzillametrics/bugzilla_metrics/trunk/modules/scm/src/org/bugzillametrics/scm/dataImport/settings.xml

Integration with CVS / Subversion

38

• relevantFiletypes: Filetypes that should be analyzed by import module at codeline level.
It should be specified as list: java,c,html

• maxTimeIntervalInMinutes: The import module searches for hidden rename and move
operations. This intervall narrows the search. Only those file removings and addings are
considered whose execution dates differ at most "maxTimeIntervalInMinutes" minutes.

• maxFileContentDifferenceInPercent: Only those files or folders are considered as equal
that differ at most "maxFileContentDifferenceInPercent" percent.

• scmSourceLocation:

• scmPerlScriptLocationAndFileName: Name of and path to the Perl script that is
contained in the project scmbug_user_name_translation.

• scmDaemonConfLocationAndFilename: Location of the SCMBug daemon
configuration file. It is usually placed in "/etc/scmbug/daemon.conf".

• relativeCvsScmBugGluePath: Relative location of the SCMBug glue in a CVS repository
(default: /CVSROOT/etc/scmbug).

• relativeSvnScmBugGluePath: Relative location of the SCMBug glue in a SVN repository
(default: /hooks/etc/scmbug).

6.1.4. Import SCM data

1. Checkout the project into the folder specified in the parameter
"relativeWorkingDirectoryCheckoutPath" of the settings file.

2. The import of all calculation data from CVS or Subversion is implemented as command
line tool: ScmImport [cvs | svn] path\to\settings.xml. As parameter it requires the type
of the used software configuration management system, and the path to the folder with
the files "settings.xml" and "logging.properties". All other settings are stored in the file
"settings.xml". The tool is contained in BugzillaMetrics.jar which can be found in the folder
"BugzillaMetricsFrontend\WEB-INF\lib" of the file release. Here is an example on how to
start the import process. Please make sure to include the required libraries on the classpath

java -classpath BugzillaMetrics.jar:jdom.jar:log4j.jar;mysql-connector-java-3.1.13-bin.jar
org.bugzillametrics.scm.dataImport.ScmImport cvs /home/someUser/scmImport

6.2. Metric specification involving the SCM -
Integration

The syntax and semantics of the metric specification presented in Chapter 3, Metric Specification
does not change in specifications for SCM data. The integration merely extends the possibilities
by adding SCM specific BaseFilter, Events and Weights. They can be mixed with those elements
that are known from Chapter 3, Metric Specification . The following sections will give an
overview over additional Section 6.1, “SCM - BaseFilter” , SCM - Events and SCM - Weights .

Integration with CVS / Subversion

39

6.1. SCM - BaseFilter

Tag (XML Element: <tag />)

In this filter the user has the opportunity to select cases by tag name.
It filters all cases that affect files or folders labeled with the given
tag.

File type (XML Element: <fileType />)

In this filter the user has the opportunity to select cases by file type.
It filters all cases that affect files with given file type.

File (XML Element: <file />)

In this filter the user has the opportunity to select cases by file
name. It filters all cases that affect files with given name.

Bugzilla Developer (XML Element: <bugzillaDeveloper />)

In this filter the user has the opportunity to select cases by
developer name. It filters all cases where a developer is active, who
uses the given name under Bugzilla.

SCM Developer (XML Element: <scmDeveloper />)

In this filter the user has the opportunity to select cases by
developer name. It filters all cases where a developer is active, who
uses the given name under SCM.

Branch (XML Element: <branch />)

In this filter the user has the opportunity to select cases by branch
name. It filters all cases that affect files or folders that are located
in the given branch.

Folder (XML Element: <folder />)

In this filter the user has the opportunity to select cases by folder
name. It filters all cases that affect folders with given name.

6.2. SCM - Events

Branch creation (XML Element: <createBranch />)

All branches that have been created within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation.

Branch removing (XML Element: <removeBranch />)

Integration with CVS / Subversion

40

All branches that have been removed within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation.

File changing (XML Element: <fileChange />)

All files that have been changed within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation. Changing means only that there is a change within the
file. For changes to the path or filename use fileMove or fileRename.

File creation (XML Element: <fileAdd />)

All files that have been added to version control within the time
interval and are referenced in a case that matches the BaseFilter will be
considered in the evaluation.

File moving (XML Element: <fileMove />)

All files that have been moved to a new folder within the time interval
and are referenced in a case that matches the BaseFilter will be
considered in the evaluation.

File removing (XML Element: <fileRemove />)

All files that have been removed from version control within the time
interval and are referenced in a case that matches the BaseFilter will be
considered in the evaluation.

File renaming (XML Element: <fileRename />)

All files that have been renamed within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation.

Folder changing (XML Element: <folderChange />)

All folders that have been changed within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation. Changing means only that there is a change within the
folder. This is the case if a file or subfolder was added to or removed
from the folder.For changes to the path or foldername use folderMove
or folderRename.

Folder creation (XML Element: <folderAdd />)

All folders that have been added to version control within the time
interval and are referenced in a case that matches the BaseFilter will
be considered in the evaluation. Note: CVS does not support version
control for folder. For this SCM - System the import algorithm labels a
folder as added when the first file or subfolder was moved into it.

Integration with CVS / Subversion

41

Folder moving (XML Element: <folderMove />)

All subfolders that have been moved to a new folder within the time
interval and are referenced in a case that matches the BaseFilter will be
considered in the evaluation.

Folder removing (XML Element: <folderRemove />)

All folders that have been removed from version control within the time
interval and are referenced in a case that matches the BaseFilter will be
considered in the evaluation.

Revision added (XML Element: <revision />)

All revisions that have been added in version control within the time
interval and are referenced in a case that matches the BaseFilter will be
considered in the evaluation.

Tag creation (XML Element: <createTag />)

All Tags that have been created within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation.

Tag removing (XML Element: <removeTag />)

All Tags that have been removed within the time interval and are
referenced in a case that matches the BaseFilter will be considered in
the evaluation.

6.3. SCM - Weights
Added lines of code (XML Element: <addedLoc />)

This Weight is enabled for all Events that describe file
activities. It returns for each event the number of added
codelines of the file that is affected by the event. The
number refers to the impact of the event.

Changed lines of code (XML Element: <changedLoc />)

This Weight is enabled for all Events that describe file
activities. It returns for each event the number of changed
codelines of the file that is affected by the event. The
number refers to the impact of the event.

Deleted lines of code (XML Element: <deletedLoc />)

This Weight is enabled for all Events that describe file
activities. It returns for each event the number of deleted
codelines of the file that is affected by the event. The
number refers to the impact of the event.

Integration with CVS / Subversion

42

Lines of code (XML Element: <loc />)

This Weight is enabled for all Events that describe file
activities. It returns for each event the number of codelines
of the file that is affected by the event. The number refers
to the impact of the event.

Number of branch events (XML Element: <numberOfBranchEvents />)

This Weight is enabled for all revision - and branch events.
It returns for each event the number of subevents refering
to a branch. For revision events it returns the number of
branch events that happened between the given revision
and the previous revision. For all branch events it returns 1.

Number of developers (XML Element: <numberOfDevelopers />)

This Weight is enabled for all revision - and file events. It
returns for each event the number of developers who are
affected to the file. For revision events it returns 1. For all
file events it returns the number of developers contributing
at least one codeline to the file.

Number of file events (XML Element: <numberOfFileEvents />)

This Weight is enabled for all revision - and file events. It
returns for each event the number of subevents refering to a
file. For revision events it returns the number of file events
that happened between the given revision and the previous
revision. For all file events it returns 1.

Number of files (XML Element: <numberOfFiles />)

This Weight is enabled for all file - and folder events. It
returns for each event the number of files that are affected.
For folder events it returns the number of files that are
located in the folder after the event happened. For all file
events it returns 1.

Number of file types (XML Element: <numberOfFiletypes />)

This Weight is enabled for all file - and folder events. It
returns for each event the number of file types that are
affected. For folder events it returns the number of file types
that are located in the folder after the event happened. For
all file events it returns 1.

Number of folder events (XML Element: <numberOfFolderEvents />)

This Weight is enabled for all revision - and folder events.
It returns for each event the number of subevents refering to

Integration with CVS / Subversion

43

a folder. For revision events it returns the number of folder
events that happened between the given revision and the
previous revision. For all folder events it returns 1.

number of subfolders (XML Element: <numberOfSubfolders />)

This Weight is enabled for all folder events. It returns for
each event the number of subfolders that are located in the
folder after the event happened.

number of tag events (XML Element: <numberOfTagEvents />)

This Weight is enabled for all revision - and tag events. It
returns for each event the number of subevents refering to a
tag. For revision events it returns the number of tag events
that happened between the given revision and the previous
revision. For all tag events it returns 1.

44

Chapter 7. Test-Framework
Two test frameworks are available for BugzillaMetrics in order to check the following program
functions:

1. BugzillaTest : Allows the verification of the results of metric specifications, based on the
given content of a database.

2. ImportTest : Allows the verification of the correct import of data from SCM systems (CVS
or Subversion). It generates real SCM systems, runs the import and compares it to expected
content of the scm database.

7.1. BugzillaTest
BugzillaTests support tests of the BugzillaMetrics core. Optionally the SCM integration can be
tested, too. One Test case consists of three files.

1. BugzillaTest: setup : One of the files specifies the contents of the Bugzilla database. If the
SCM integration is part of the review the content of the SCM database must also be indicated.

2. BugzillaTest: metric : The second file is a Metric specification. It will be processed by
BugzillaMetrics based on the database content.

3. BugzillaTest: result : The expected metric result is specified in a third file.

7.1.1. Setup

The content of the database is specified in a XML file. It consists of a root-element <db /> and
two child elements <bugzilladb /> and <scmdb />. Both include a child element for each table
entry in the Bugzilla- or SCM-database. The name of an element corresponds to the target table.
For each column of the table there is an attribute named by the corresponding column.

7.1.1.1. Bugzilla-database:

All tables and columns can be found in http://www.ravenbrook.com/project/p4dti/tool/cgi/
bugzilla-schema/ [http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/].

7.1.1.2. SCM database:

The following items are available to fill the SCM database.

http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/
http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/
http://www.ravenbrook.com/project/p4dti/tool/cgi/bugzilla-schema/

Test-Framework

45

Table 7.1. Elements for the specification of database table entries (SCM objects)

Table name Attribute Value

<branch /> ID Integer

Name String

Enabled True = 1, False = 0

<developer /> ID Integer

Bugzilla_Name String

Scm_Name String

<scm_File /> ID Integer

Name String

Type String

FolderID Integer

Enabled True = 1, False = 0

<scm_Folder /> ID Integer

DevelopmentLineType_ID Integer

DevelopmentLine_ID Integer

Name String

Path String

Project_Name String

Enabled True = 1, False = 0

<tag /> ID Integer

Name String

Enabled True = 1, False = 0

Test-Framework

46

Table 7.2. Elements for the specification of database table entries (Activities)

Table name Attribute Value

<branchActivity /> ID Integer

Type_ID Integer

SCM_Branch_ID Integer

<fileActivity /> ID Integer

Type_ID Integer

SCM_File_ID Integer

File_LOC Integer

Contributor_ID Integer

Contributor_LOC Integer

Committer_Added_LOC Integer

Committer_Deleted_LOC Integer

Committer_Changed_LOC Integer

Old_File_ID Integer

<folderActivity /> ID Integer

Type_ID Integer

SCM_Folder_ID Integer

File_COUNT Integer

Filetype_COUNT Integer

Subfolder_COUNT Integer

Old_Folder_ID Integer

<scm_Revision_Activity_-
History />

ID Integer

Revision_ID Integer

Developer_ID Integer

Activity_ID Integer

Activity_Type_ID Integer

Log_Comment String

TimeStamp YYYY-MM-DD HH:MM:SS

Bug_ID Integer

<tagActivity /> ID Integer

Type_ID Integer

SCM_Tag_ID Integer

Test-Framework

47

7.1.2. Metric specification
The test framework uses metric specifications of the normal syntax. It offers the full range of
functions.

7.1.3. Result comparison
The result of the metric calculation, which is a time series, is an XML file. The root element
is <metricResult />. Its children are the specified groups: <group name="...">. For each of the
calculated values of the time series, there is an element <timePeriod scope="..."> in which the
calculations are stored: <calculation name="sum"> "value" </ calculation>.

7.1.4. BugzillaTest example
Database content:

<db><bugzilladb>
 <user userid="1" />
 <user userid="2" />
 <product id="1" />
 <component id="1" />
 <bug bug_id="1" creation_ts="2006-08-07 12:00:00"
 priority="P4" assigned_to="2" />
 <bug bug_id="2" creation_ts="2006-08-14 12:00:00"
 priority="P1" />
 <bug bug_id="3" creation_ts="2006-08-21 12:00:00"
 priority="P2" assigned_to="2" />
 <bug bug_id="4" creation_ts="2006-08-28 12:00:00"
 priority="P3" />
</bugzilladb></db>

Metric specification:

<?xml version="1.0" encoding="UTF-8"?>
<metric>
 <baseFilter>
 <value field="assignee">1</value>
 </baseFilter>
 <groupingParameters>
 <none />
 </groupingParameters>
 <groupEvaluations>
 <calculation name="sum" >
 <sum caseValueCalculator="default" />
 </calculation>
 </groupEvaluations>

Test-Framework

48

 <caseValueCalculators>
 <countEvents id="default" >
 <event>
 <endOfTimeInterval/>
 </event>
 <weight>
 <mapping field="priority">
 <map from="P1" to="4" />
 <map from="P2" to="3" />
 <map from="P3" to="2" />
 <map from="P4" to="1" />
 </mapping>
 </weight>
 </countEvents>
 </caseValueCalculators>
 <evaluationTimePeriod>
 <timePeriod>
 <start>2006-08-14</start>
 <end>2006-08-27</end>
 </timePeriod>
 </evaluationTimePeriod>
 <timePeriodGranularity>
 <week />
 </timePeriodGranularity>
 <fixedFields />
</metric>

Expected result:

<metricResult>
 <group name="none">
 <timePeriod scope="week 33/2006">
 <calculation name="sum">4</calculation>
 </timePeriod>
 <timePeriod scope="week 34/2006">
 <calculation name="sum">4</calculation>
 </timePeriod>
 </group>
</metricResult>

7.2. Import-Test
The test of the data import is realized by ImportTest. The framework generates real SCM systems
that have to be specified during setup. The result content of the database written by the import
module is compared with a mysqldump report. One test consists of two files:

Test-Framework

49

1. ImportTest: setup : scm specification.

2. ImportTest: result : mysqldump report.

7.2.1. Test setup

The information for the SCM initialization includes the following main elements that are
integrated in a XML schema:

1. Content of the Bugzilla database.

2. Information for the SCM scenario (CVS (NT) and / or subversion):

The SCM scenario is defined for a specific version management system. There are elements
<cvs /> and <svn /> for CVS and SVN. Within these elements all activities in the SCM-
repository can be defined. These activities must be written in the desired order of execution.
An exception is <import />. This element may be no more than once used and will always
be the first executed operation. In the specification of a CVS repository, the import operation
must be used. Otherwise CVS does not initialize the repository and the following operations
can not be executed. The import element, however, can also be empty. Optionally, the
execution date of an operation can be indicated: time = "yyyy-mm-dd hh: mm: ss"

The time should only be defined in test cases, which depend on a time specification.
Otherwise, no time should be defined. A specification could cause the following problems:

a. A specification causes the change of the system time. This operation requires
administrative rights.

b. The development environment could crash (eg Eclipse).

c. The filesystem could become inconsistent (eg Linux ext3 filesystem).

The specified configuration of the repository is independent of the version management
system. So if the same test for CVS and SVN should be checked, the configuration has to be
written only once. Both scenarios can be defined in a common file. The tests will be executed
one after another and will be compared with the same expected result.

The following operations can be used for the SCM setup:

• Add operations: Operation will not be committed!

1. <add SourceLocation="" sourceFileName="" targetLocation="" targetFileName=""
time="" />

2. <addFolder Location="" time="" />

3. <branch BranchName="" comment="" time=""/>

4. <tag Location="" tagName="" comment="" time=""/>

• Checkout operation: Checking out a project branch or tag.

Test-Framework

50

1. <checkout BranchName="" projectName="" time="" />

• Commit operation: Committing previous executed operations.

1. <commit Comment="" time="" />

• Import operation: To import files directly after the initialization.

1. <import Comment="" time="">

• Add file after initialisation: Child element of <import />. Description of a file that should be
imported after initialisation of the test repository.

1. <file SourceFileName="" sourceLocation="" targetLocation="" targetFileName="" />

• Move operations: Moving a file / folder in the local working copy. Operation will not be
committed!

1. <moveFile FileName="" sourceLocation="" targetLocation="" time=""/>

2. <moveFolder SourceLocation="" targetLocation="" comment="" time=""/>

• Remove operations: Deleting a branch, file, folder or tag in the local working copy. Operation
will not be committed!

1. <removeBranch BranchName="" comment="" time=""/>

2. <removeFile Location="" fileName="" comment="" time=""/>

3. <removeFolder Location="" comment="" time=""/>

4. <removeTag TagName="" comment="" time=""/>

• Rename operation: Renaming a file / folder in the local working copy. Operation will not be
committed!

1. <rename Location="" oldName="" newName="" comment=""/>

• File replace operation: Replace a file with another. Used to simulate a file change.

1. <replaceFile SourceLocation="" sourceFileName="" targetLocation=""
targetFileName="" time="" />

7.2.2. Result comparison

The Import test launches an import process based on a SCM system with the above defined
scenario. The result will be compared at database level. This is done using a database export from
mysqldump as XML file. Because of differences depending on time and executing developer,
the following entries are ignored:

1. Records of the type TimeStamp: Values depend on test execution time.

Test-Framework

51

2. Revision_ID in SCM_Revision_Activity_History table: This value is not predictable because
CVS generates an ID for each commit.

3. Developer names in the Developer table. The name corresponds to the user logged on the
operating system.

The comparison is more flexible than a simple file-diff, but it has disadvantages:

1. A structural modification of the database means that all the tests fail. This does not apply to
an expansion with new columns.

2. Two tables that contain the same records but in different order are not equal.

7.2.3. ImportTest example

Example: SCM test case for committing TestFile1.java in root folder of trunk (SVN repository):

Setup:

 <scm>
 <bugzilladb>
 </bugzilladb>
 <svn>
 <add sourceLocation=""
 sourceFileName="TestFile1.java"
 targetLocation="trunk"
 targetFileName="TestFile1.java" />
 <commit comment="bug1: Kommentar fuer den commit" />
 </svn>
 </scm>

Result comparison:

 <?xml version="1.0"?>
 <mysqldump xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance">
 <database name="scm">
 <table_structure name="Developer">
 (...)
 </table_structure>
 <table_data name="Developer">
 <row>
 <field name="ID">1</field>
 <field name="Bugzilla_Name">Error</field>
 <field name="Scm_Name">root</field>
 </row>
 </table_data>

Test-Framework

52

 (...)
 </database>
 </mysqldump>

