
R. Dumke et al. (Eds.): IWSM / MetriKon / Mensura 2008, LNCS 5338, pp. 127–140, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Comparison of Process Quality Characteristics Based
on Change Request Data

Holger Schackmann and Horst Lichter

RWTH Aachen University, Research Group Software Construction
Ahornstr. 55, 52074 Aachen, Germany

{Schackmann,Lichter}@swc.rwth-aachen.de

Abstract. The evaluation of metrics on data available in change request
management (CRM) systems offers valuable information for the assessment of
process quality characteristics. The definition of appropriate metrics that
consider the underlying change request workflow and address the information
needs of an organization is an intricate task.

Furthermore CRM systems usually provide only a number of predefined
metrics with limited adaptability. The tool BugzillaMetrics offers a more
flexible approach that simplifies defining and adjusting new metrics. However a
systematic approach for deriving an appropriate metric in a target-oriented way
is needed. This paper describes a corresponding procedure on how to develop
and validate metrics on CRM data applicable for the comparison of process
quality characteristics.

Keywords: Process Metrics, Change Request Management, Metric Specification,
Software Measurement Design, Measurement Tool.

1 Introduction

The management of a large software project portfolio raises several managerial
challenges, like balancing resource allocation between different projects, and aligning
development processes to the standards of the organization. Hence the project statuses
and process quality characteristics, like planning precision or problem resolution
speed, must be monitored continuously in order to identify development process
weaknesses, and assess process improvements. Collecting the required data by
regularly project status reporting can be expensive and intrusive, and furthermore
ignores the past history of the process [1]. This motivates mining data from routinely
collected repositories like change request management (CRM) systems.

The usage of this data for evaluating process quality characteristics imposes certain
difficulties. Appropriate metrics will depend on the designated process and the
improvement goals, as well as on the data available. It must be validated that the
metrics are proper numerical characterizations of the qualities of interest, and that the
measurements can be compared between different projects.

However existing CRM tools provide only a number of fixed metric evaluations
and are limited in their adaptability [2]. Hence extraction and integration of the data

128 H. Schackmann and H. Lichter

typically require the development of custom scripts. Validation of the metrics most
often necessitates adjusting the metrics definition and corresponding scripts, which is
time-consuming and costly.

The open source tool BugzillaMetrics implements a more flexible approach for the
evaluation of metrics on CRM data, based on declarative metric specifications [2].
The tool allows concentrating the main effort on the model of the metric, not on its
implementation. Thus experimenting with metrics and adjusting them is faster and
easier.

But, first experience with using the tool has revealed certain pitfalls in developing
appropriate metric definitions [2]. This motivates the need for a structured approach
for developing metrics on CRM data.

This paper presents a procedure to systematically develop metrics on CRM data
used to compare process quality characteristics. This procedure includes validation
steps as well as guidance for the interpretation of the metric results. First an overview
of related work is given. Section 3 briefly describes the BugzillaMetrics tool.

2 Related Work

There exist numerous approaches to analyse CRM data as well as data from version
control systems for several purposes (e.g. visualization of software evolution [4], or
change impact analysis [5]). A survey is given by Kagdi et al [6]. Some of these
approaches do also analyze specific aspects of the process. For example Sliwerski et
al. present an approach to reconstruct links between the version-control system and
resolved defect reports in the CRM database in order to analyse the frequency of fix-
inducing changes [7]. Koponen presents a tool to analyse several aspects of
maintenance processes of open source software, like typical defect-lifecycles, and
origin of change analysis [8]. Gasser and Ripoche analyse CRM data of open source
projects in order to extract their process models [9].

However none of these approaches is targeted at a general procedure for the
assessment of process quality characteristics based on CRM data.

3 BugzillaMetrics

BugzillaMetrics is based on user defined metric specifications that abstract from the
way the information is stored in the CRM database [3]. The basic building blocks for
these specifications are filters for properties of a change request (e.g. its severity,
status, or target milestone), and events that occur in the history of a change request
(e.g. its creation, a change of the assignee, or the reopening of a resolved request).
Filters and events can be combined with Boolean operators.

Each metric specification contains a base filter that defines which change requests
are considered during the calculation (e.g. only change requests that belong to a
certain product). Further on the evaluation time period and the time granularity
(e.g. month or year) are defined.

Then one of several predefined value calculators can be applied to calculate a
value for individual change requests in each time interval according to the given time

 Comparison of Process Quality Characteristics Based on Change Request Data 129

granularity. Examples of value calculators are the calculation of the length of a time
interval between two specified events in the lifecycle of a change request, the
calculation of the time a change request resides in a certain state, or the calculation of
the number of occurrences of certain events during a time period. In the latter case an
optional weight can be applied (e.g. a weighting by the severity of the change request,
or by its estimated remaining workload). In terms of the ISO/IEC 15939 standard [10]
the outcome of a value calculator can be denoted as base measure while a change
request is the entity to be characterized by measuring.

The outcome of these value calculators can be combined with operations like sum,
maximum, or mean value to calculate a result for a certain time interval. This outcome
represents a derived measure related to the process in a certain time interval.

Thereby the tool offers a large flexibility for the specification of metrics. Furthermore
the metric specification is separated from the way the required information is retrieved
from the CRM database.

4 Developing Metrics on Change Request Data

This section describes a procedure on how to develop and validate metrics that target
at the comparison of process quality characteristics. The approach is exemplified by
developing metrics applicable to the CRM database of the Eclipse open source
community.

4.1 Bidirectional Quality Models

In order to derive a metric we rely on the approach of bidirectional quality models
[11]. This subsection briefly describes the related concepts (see Figure 1) and maps
them to the terms of the ISO measurement information model contained in the
ISO/IEC 15939 standard [10].

Quality

Q-Characteristic

Q-Characteristic

Q-Characteristic

Q-Characteristic

Q-Characteristic
Q-Property

Q-Property

Q-Property

Q-PropertyQ-Indicator

Q-Indicator

Fig. 1. Concepts of the bidirectional quality model

On the one side the quality characteristics reflect high-level requirements on the
quality. In terms of the ISO/IEC 15939 standard these quality characteristics
correspond with information needs derived from the business, organizational,
regulatory, product or project objectives. An example of a quality characteristic is
planning precision which can be subdivided into the quality characteristics: adherence
to schedule, adherence to planned effort, and process transparency.

130 H. Schackmann and H. Lichter

On the other side the quality properties denote objective characteristics of an
entity (i.e. product, process, or system), that can be used to distinct between the
considered entities. In terms of the ISO/IEC 15939 standard a quality property is an
attribute of an entity that can be objectively and quantitatively distinguished by
automated means. Examples for such quality properties are the total number of
defects, the number of reopened change requests, or the frequency of assignee
changes of a change request.

The quality properties will be used in a bottom-up fashion to form quality
indicators. A quality indicator describes how a number of quality properties can be
interpreted with respect to a quality characteristic. Hence the quality indicators bridge
the gap between the technical view of quality properties and the abstract view of the
quality characteristics. The notion of quality indicator complies with ISO/IEC 15939.

4.2 Identification of Quality Characteristics

The process quality characteristics of interest correspond to information needs that are
in general derived from the objectives of the organization [12]. These characteristics
can be refined stepwise.

For example the Eclipse community applies an agile development process based on
several practices [13]. This process implicitly contains certain objectives, e.g. the
planning precision of the scheduled milestones.

Related to the practice called “community involvement”, one can derive the
process quality characteristic “responsiveness to incoming defect reports”, since the
establishment of an active community requires timely reactions on observed
problems. Note that this characteristic does not consider the resolution time of
defects, but the duration to the first reaction on an incoming defect report. As most of
the Eclipse projects are related to offering a general tools and integration platform the
responsiveness on defect reports will have an impact on dependent projects based
upon the Eclipse technology. In the following we will use this process quality
characteristic as an example.

4.3 Identification of Quality Properties

In order to identify measurable quality properties it is necessary to analyze the way
the CRM system is used, e.g. it must be examined what is the typical workflow of a
change request, and which information is collected on a change request. Then quality
properties need to be defined where some relation to the quality characteristics is
conjectured.

Since each quality characteristic is related to some improvement goal, potential
quality properties can be identified based on the Goal Question Metric approach [14].
However since the analysis is based on CRM data, it must be possible to determine a
quantitative value for each quality property based on the data collected during the
lifecycle of a change request. Naturally there will be some process quality
characteristics where it is not possible to determine related quality properties, since
not all quality characteristics can be evaluated based on the available CRM data.

For our ongoing example we need to find out which reaction can be considered as
an appropriate acknowledgement for an incoming defect report. At first sight this will

 Comparison of Process Quality Characteristics Based on Change Request Data 131

be either adding an additional comment, changing the status of the defect report, or
assigning the defect report to a specific assignee. These events can be specified in a
metric of the BugzillaMetrics tool. The plausibility of the metric can then be validated
by inspecting the results calculated for individual change requests and examining
whether the history of a request conforms to the envisaged interpretation.

In our case it needs to be checked whether the metric considers all relevant
reactions on defect reports. A detailed consideration shows that there are some more
reactions, like changing the severity, priority, or the target milestone of the defect
report, since this gives feedback about how the defect is rated by the project team.
Hence the metric definition will be refined stepwise.

Until now the metric does only specify how the numbers for individual change
requests are calculated. The next subsection will describe how these numbers will be
aggregated in order to compare the process quality characteristics of different
projects.

4.4 Definition of Quality Indicators

At first it needs to be defined how the values for individual change requests of a project
can be aggregated. An appropriate metric must fulfil the following requirements:

• Elimination of interfering factors: It must be avoided that the aggregated value
can be predominantly influenced by other factors, like size and age of the project.
If other factors interfere with the original intention of the measurement the result
will be difficult to interpret and to compare between projects.

This would be the case in our example if we take the arithmetic mean of the
individual first reaction values for each defect report. The result would
potentially be distorted if a number of old but untreated defect reports is
processed in a long-lived project. Hence the aggregation of the individual values
will require using some kind of normalization or mean value that is stable against
these kinds of outliers.

• Timely relatedness to perceived problems in the process: Each value calculated
for a change request belongs to a specific time interval (e.g. month or year). It
must be carefully considered that the assignment of the measurement values to
time intervals stands in a temporal connection to potential causes in the process in
order to prevent misleading interpretations.

In our example this may happen if the values would be assigned to the time
interval in which the first reaction occurred. Processing a number of old but
untreated defect reports might then erroneously be interpreted as bad
responsiveness in that time interval. Though the cause why these defect reports
remained untouched dates back to the past.

• Appropriate granularity of time intervals: The granularity of the time intervals
for which the change request values are aggregated must be similar to the release
cycle of the project. Otherwise the resulting values will possibly be diverging due
to the current phase in the release cycle (e.g. the endgame phase in the Eclipse
development process [13]).

132 H. Schackmann and H. Lichter

In order to derive an aggregated value that fulfils these requirements it is often
better not to use the absolute values (in our case the time until first reaction on a
change request), but to count the change requests where this value exceeds a certain
threshold.

Hitting the threshold should be related to having a negative or positive impact on
some quality characteristic. In our example it is reasonable to assume that defect
reports with a severity equal or higher than normal that do not get any response within
three days will probably retard or hamper dependent projects.

}),(

),(),({)ents(ReactionEv

...CR

CRCRCR

angeassigneeCh

gestatusChanedcommentAdd=
 (1)

})nts(eactionEveR)),(tween(min{timeBe)eaction(TimeUntilR CReeCRCR ∈= creation (2)

⎩
⎨
⎧ ≤

=
otherwise

days 3)eaction(TimeUntilR

1

0
)it(ThresholdH

CR
CR (3)

⎩
⎨
⎧

=
=

+
+

=
0)it(ThresholdH

1)it(ThresholdH

)eaction(TimeUntilR)(

days 3)(
)itDate(ThresholdH

CR

CR

CRCR

CR
CR

tecreationDa

tecreationDa (4)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈
∧≥∧

=
altimeIntervCR

CRCR
CRaltimeInterv

)itDate(ThresholdH

)()(
)CRs(Considered

normalseverityportisDefectRe (5)

)s(CRConsidered

)it(ThresholdH

)tions(OfLateReacPercentage
)s(CRConsidered

altimeInterv

CR

altimeInterv
altimeIntervCR

∑
∈= (6)

Fig. 2. Definition of PercentageOfLateReactions

Counting the change requests at the time when the threshold was hit ensures that
there is a timely relation to perceived unresponsiveness. Additionally it enables to
consider those defect reports in the calculation that did not yet get a response.
Normalization of the results can be achieved by calculating the percentage of defect
reports whose first response hits the threshold. The metric definition is sketched in
Figure 2.

The calculation can again be specified with BugzillaMetrics (see Figure 3, numbers
refer to the corresponding part of the metric definition). In order to use the aggregated
result as quality indicator it requires defining some guidance how to interpret the
results. This will be discussed in the following section.

 Comparison of Process Quality Characteristics Based on Change Request Data 133

<metric>
 <baseFilter>
 <or>
 <value field="severity">normal</value>
 …
 <value field="severity">blocker</value>
 </or>
 </baseFilter>

 <valueCalculators>
 <intervalLengthCalculator id="firstReaction">

 <from>
 <creation />
 </from>

 <to>
 <or>
 <commentAdded />
 <transition field="status" />
 <transition field="assignee" />
 <transition field="severity" />
 <transition field="priority" />
 <transition field="component" />
 <transition field="targetMilestone" />
 …
 <transition field="version" />
 </or>
 </to>

 <thresholdWeight thresholdInDays="3" />
 </intervalLengthCalculator>

 </valueCalculators>

 <groupEvaluations>
 <calculation name="PercentageReactionLaterThan3days">
 <divide>
 <sum valueCalculator="firstReaction"/>
 <count valueCalculator="firstReaction"/>
 </divide>
 </calculation>
 </groupEvaluations>
 …
</metric>

Determines which change requests are
considered during the calculation (5)

Aggregates individual values. (6)

Assigns 1 if the threshold was hit, otherwise 0. (3)(5)

Specification based on events (1)

Calculates values for individual
change requests (2)(4)

Fig. 3. Metric Specification of “Percentage of Reaction later than 3 days”. Numbers refer to the
related formulas in Figure 2.

134 H. Schackmann and H. Lichter

4.5 Interpretation Based on Empirical Data

The comparison within a peer group of projects offers a practical approach for the
interpretation of the measurement values in order to decide whether a project is doing
good or bad with respect to a certain quality characteristic.

The CRM system of the Eclipse project provides in our example the necessary
empirical data. The resulting measurement values for a number of large projects are
shown in Figure 4. Since the release dates of the major Eclipse projects are aligned in
simultaneous release at the end of June, the measurement values have been calculated
for the time periods between these releases.

5

10

15

20

25

30

35

40

2004/06/29 - 2005/06/28
Eclipse 3.1

2005/06/29 - 2006/06/30
Eclipse 3.2 (Callisto)

2006/07/01 - 2007/06/29
Eclipse 3.3 (Europa)

2007/06/30 - 2008/06/25
Eclipse 3.4 (Ganymede)

%

CDT EMF Equinox GEF
JDT MDT PDE Platform TPTP
Web Tools Median

Fig. 4. Percentage of defect reports with the first reaction later than 3 days and a severity of
"normal" or higher

It can be observed that the values for most of the projects tend to change only
gradually between the years. This matches with the experience that discontinuous
improvements of the process can rather seldom be achieved in large projects. If the
values for most of the projects are volatile the underlying metric definition should be
examined whether it really fulfils the requirements stated in the previous section.

A value for a project can now be interpreted in comparison to the value distribution
in the time period related to the release. Naturally there can be slight differences of
the interpretation dependent on the base for the comparison. The boxplot denotes the

 Comparison of Process Quality Characteristics Based on Change Request Data 135

second and third quartile of the data set. Projects within this range can be interpreted
as having an around average responsiveness to incoming defect reports. So it can for
example be stated that the EMF project had a good responsiveness for several release
periods. The responsiveness of the GEF project is rather poor and declined in the last
years. These results match with the experience gained during the development of a
toolset at our research group that is called ViPER and is based on EMF and GEF [15].

4.6 Additional Example

In order to illustrate the procedure for metrics development an additional example
will briefly be discussed in this section. At first we have to identify a quality
characteristic of interest. A general objective in the development process is the
efficient processing of the change requests. A related sub-goal is that the change
requests should be resolved initially in an adequate way, since later rework often
requires additional effort, and may be caused by insufficient coordination or
misunderstandings related to the initial change request. Hence we can derive the
quality characteristic “frequency of rework”.

In order to identify related measurable quality properties we have to analyse how
rework is reflected in the available information about the lifecycle of a change
request. Bugzilla has two related fields: status and resolution. If some action has been
taken to resolve a change request, it is switched to the “Resolved” status. Some
Eclipse projects also use the subsequent status values “Verified” and “Closed”.

The resolution field indicates how the change request was resolved. Possible values
are for example “Fixed” (some change to the software had been implemented),
“Duplicate” (change request is already described in another existing change request),
“WorksForMe” (described problem could not be reproduced), or “Not_Eclipse”
(problem is related to a third-party package).

If the resolution is deemed to be incorrect the change request can be switched to
the status “Reopened”. A state transition to the status “Reopened” of a change request
with resolution “Fixed” would indicate that a bug fix or new feature had not been
implemented correctly. If the change request had a different resolution (e.g.
“Duplicate” or “Not_Eclipse”) this indicates that the decision to resolve the change
request was based on some wrong assumptions.

Basically one can define the quality property “number of transitions to Reopened
during the lifecycle of a change request”. However we have to clarify whether we are
only interested in transitions where some rework of previous changes in the software
is required, or we are interested in all transitions where a change request is
reexamined for some reason. The first interpretation would require taking the
resolution field into account when identifying the respective state transitions. While
both interpretations are reasonable, we choose the latter one here, since we are more
interested in rework related to the overall change request process, instead of rework
related to the quality of the implemented changes in the software.

Again, the plausibility of the previous assumptions can be validated by inspecting
the lifecycle of individual change requests. By doing this we notice that the Eclipse
CRM database allowed setting the resolution “Later” or “Remind” when a change
request was switched to the status “Resolved”. These resolution values are now
deprecated since they do not indicate that the change request had really been resolved

136 H. Schackmann and H. Lichter

__

<metric>

 …
 <valueCalculators>
 <countEvents id="TransitionsToReopened">
 <event>
 <and>
 <transition field="resolution">
 <from>FIXED</from>
 <from>INVALID</from>
 <from>WONTFIX</from>
 <from>DUPLICATE</from>
 <from>WORKSFORME</from>
 <from>MOVED</from>
 <from>NOT_ECLIPSE</from>
 </transition>
 <stateFilter>
 <value field="status">REOPENED</value>
 </stateFilter>
 </and>
 </event>
 </countEvents>

 <countEvents id="TransitionsToResolved">
 <event>
 <and>
 <transition field="resolution">
 <to>FIXED</to>

…
 <to>NOT_ECLIPSE</to>
 </transition>
 <stateFilter>
 <value field="status">RESOLVED</value>
 </stateFilter>
 </and>
 </event>
 </countEvents>

 </valueCalculators>

 <groupEvaluations>
 <calculation name="ProportionOfRework">
 <divide>
 <count valueCalculator="TransitionsToReopened"/>
 <count valueCalculator="TransitionsToResolved"/>
 </divide>
 </calculation>
 </groupEvaluations>

…
</metric>

All possible
resolutions,
except „Later“
and „Remind“.

All possible
resolutions,
except „Later“
and „Remind“.

Fig. 5. Metric Specification of “Number of transitions to ‘Reopened’ divided by the number of
transitions to ‘Resolved’ in a time period”

 Comparison of Process Quality Characteristics Based on Change Request Data 137

[16]. Instead such change requests should be marked either by setting a target
milestone named “Future”, by adding the “needinfo” keyword (which means asking
more information from the reporter), or by decreasing their priority.

When counting status transitions to “Reopened” it must therefore be distinguished
between change requests that had the resolution “Later” or “Remind”, and those that
had a proper resolution. Only transitions that had a proper resolution can be counted
as reopened change requests. Otherwise the resulting values would be distorted for
projects that once had used the “Later” and “Remind” resolution.

The quality indicator has to be defined in a way that the resulting values can be
compared between different projects. The total number of transitions to the
“Reopened” status in a certain time period will depend on the size of the project. In
order to normalize the result we can divide by the total number of change requests
resolved in that time period.

3

5

7

9

11

13

15

2004-06-29 - 2005-06-28
Eclipse 3.1

2005-06-29 - 2006-06-30
Eclipse 3.2 (Callisto)

2006-07-01 - 2007-06-29
Eclipse 3.3 (Europa)

2007-06-30 - 2008-06-25
Eclipse 3.4 (Ganymede)

%

CDT EMF Equinox GEF
JDT MDT PDE Platform TPTP
Web Tools Median

Fig. 6. Percentage of transitions to “Reopened” relative to the number of transitions to “Resolved”
in a time period

More precisely we have to decide whether to count resolved change requests in that
time period only once, or to count each state transition to “Resolved” of the same
change request. Since the numerator (total number of transitions to the “Reopened”
status) refers to all incorrect resolutions of a change request, we choose the second
option for the denominator, since this corresponds to all resolutions of a change
request. Again, state transitions to the “Resolved” status with the resolution “Later” or
“Remind” should not be considered, since these change requests have not really been
resolved. The corresponding metric specification is shown in figure 5.

138 H. Schackmann and H. Lichter

Figure 6 shows the resulting measurement values of a number of large projects.
Again it can be stated that the EMF project performs better than the average project,
while GMF had a high proportion of reopened change requests. Additionally it can be
stated from our experience that the GMF project has provided few major new features
in the Europe and Ganymede release, and concentrated more on fixing defects.

5 Conclusion and Outlook

In this paper we presented a procedure for developing and validating metric
definitions based on CRM data that can be used to evaluate quality characteristics of
the development process. It is based on bidirectional quality models which provide an
approach how to relate high-level quality characteristics to the technical view of
measurable quality properties.

Summarizing, the following steps are performed for the development of a metric:

1. Deriving of process quality characteristics from the objectives of the
organization.

2. Improvement goal based identification of corresponding quality properties
and initial validation based on the inspection of individual change request
lifecycles.

3. Definition of quality indicators that enable comparability between projects.
4. Interpretation based on empirical data.

The usage of metric specifications provided by the BugzillaMetrics tool facilitates
an iterative refinement of the related metric definitions in steps 2 to 4. Further on the
presented procedure guides the validation of underlying assumptions on different
levels: by inspecting the lifecycle of individual change requests and by checking
whether the results on the project and the project portfolio level match with
experience. This enables to uncover wrong assumptions early during development of
the metric.

In the presented examples is a one-to-one relation between the quality characteristic
and the quality indicator. In general there can be several quality indicators that need to
be weighted according to their influence on a quality characteristic.

It depends on the available CRM data which process characteristics can be
evaluated. The Eclipse CRM database enables e.g. to consider characteristics like
stability of the prospected target milestones, resolution speed of problem reports and
enhancement requests, frequency of high-severity bugs, or the stability of the
prioritization of change requests.

CRM systems with a more fine-grained workflow definition and more data
collected like estimated and actual work time enable the evaluation of a wider range
of quality characteristics.

Since BugzillaMetrics can automatically adapt to custom information collected for
the change requests in the Bugzilla database, it can straightforwardly be used for related
analyses. As an example the orthogonal defect classification (ODC) requires to classify
each reported defect according to a defect type and a defect trigger in order to compare
their distribution to an expected distribution in a certain phase of the process [17]. Given

 Comparison of Process Quality Characteristics Based on Change Request Data 139

that these classifications are collected in Bugzilla, the corresponding distributions and
their change over time can directly be evaluated using BugzillaMetrics.

Furthermore it can be of interest to associate some kind of size metric to the
change requests. By end of 2008 an extension of BugzillaMetrics will be released that
enables collecting metrics from version control systems by considering the code
changes related to a change request. This enables to consider size metrics like the size
of a code change in the evaluations. A prerequisite for these evaluations will be the
integration of Bugzilla with version control systems, such as CVS and Subversion, as
provided by the Scmbug project [18].

Acknowledgements. We would like to thank Kisters AG, Aachen for supporting this
work, and the Eclipse Foundation for providing access to the CRM database.

References

1. Cook, J.E., Votta, L.G., Wolf, A.L.: Cost-Effective Analysis of In-Place Software Processes.
IEEE Trans. on Software Engineering 24(8) (1998)

2. Grammel, L., Schackmann, H., Lichter, H.: BugzillaMetrics - Design of an adaptable tool for
evaluating user-defined metric specifications on change requests. In: Büren, Bundschuh,
Dumke (eds.) Tagungsband des DASMA Software Metrik Kongresses MetriKon 2007.
Shaker Verlag, Aachen (2007)

3. BugzillaMetrics, http://www.bugzillametrics.org
4. Gall, H.C., Lanza, M.: Software evolution: analysis and visualization. In: Proc.of the 28th

international Conference on Software Engineering (ICSE 2006). ACM, New York (2006)
5. Canfora, G., Cerulo, L.: Impact Analysis by Mining Software and Change Request

Repositories. In: Proc. of the 11th IEEE International Software Metrics Symposium –
METRICS 2005, Como, Italy. IEEE CS Press, Los Alamitos (2005)

6. Kagdi, H.H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for mining
software repositories in the context of software evolution. Journal of Software Main-
tenance 19(2), 77–131 (2007)

7. Sliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: 2nd
International Workshop on Mining Software Repositories (MSR 2005). ACM Press, New
York (2005)

8. Koponen, T.: RaSOSS - Remote Analysis System for Open Source Software. In: The
International Conference on Software Engineering Advances (ICSEA 2006). IEEE Press,
Los Alamitos (2006)

9. Gasser, L., Ripoche, G.: Distributed Collective Practices and F/OSS Problem Management:
Perspective and Methods. In: Conference on Cooperation, Innovation & Technology (CITE
2003), Troyes, France (2003)

10. ISO/IEC 15939. Systems and software engineering – Measurement Process. International
Organization for Standardization – ISO, Geneva (2007)

11. Simon, F., Seng, O., Mohaupt, T.: Code-Quality Management. Dpunkt-Verlag, Heidelberg
(2006)

12. Ebert, C., Dumke, R.: Software Measurement: Establish - Extract - Evaluate - Execute.
Springer, Berlin (2007)

13. Gamma, E.: Agile, Open Source, Distributed, and On-Time – Inside the Eclipse
Development Process. Keynote Talk, ICSE, St. Louis, Missouri (2005)

140 H. Schackmann and H. Lichter

14. Basili, V., Caldiera, G., Rombach, H.D.: The Goal Question Metric Paradigm. In:
Encyclopedia of Software Engineering, John Wiley & Sons, Chichester (1994)

15. ViPER - Visual Tooling Platform for Model-Based Engineering, http://www.viper.sc
16. Eclipse Bugs – Remove LATER and REMIND resolutions, https://bugs.eclipse.

org/178923
17. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., Wong,

M.: Orthogonal Defect Classification - A Concept for In-Process Measurements. IEEE Trans.
Software Eng. 18(11), 943–956 (1992)

18. Makris, K., Ryu, K.D.: Scmbug: policy-based integration of software configuration
management with bug-tracking. In: USENIX Annual Technical Conference. USENIX
Association, Berkeley (2005)

	Comparison of Process Quality Characteristics Based on Change Request Data
	Introduction
	Related Work
	BugzillaMetrics
	Developing Metrics on Change Request Data
	Bidirectional Quality Models
	Identification of Quality Characteristics
	Identification of Quality Properties
	Definition of Quality Indicators
	Interpretation Based on Empirical Data
	Additional Example

	Conclusion and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

