
BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 1

BugzillaMetrics - Design of an adaptable tool for evaluating
user-defined metric specifications on change requests

Lars Grammel, Holger Schackmann, Horst Lichter
RWTH Aachen University – Research Group Software Construction

lars.grammel@googlemail.com, {schackmann, lichter}@cs.rwth-aachen.de

Abstract:
The evaluation of metrics on the data available in change request management
(CRM) systems can give valuable information for the management of software de-
velopment. It can for example be helpful in assessing the current workload, product
quality or development process weaknesses.
Metrics and charts on change requests are already available in current CRM sys-
tems. They provide information about common metrics, but their adaptability is
limited with respect to the specification of metrics customized to organization-
specific needs.
This paper describes a more flexible approach for the evaluation of metrics on
change requests. The core part of the presented tool is an event driven evaluation
algorithm for the calculation of time series data. It is parametrized with user de-
fined metric specifications. This enables a separation between metric specification
and information retrieval. Further design decisions enable a transparent execution
optimization and an abstraction from the data sources of the underlying CRM da-
tabase.

Keywords
Process metrics, change request management, metrics specification

1 Introduction

To manage the evolution of software processes and products, it is essential to eva-
luate their current state and how it evolved. This information can be obtained by
analyzing the data that is available in change request management (CRM) sys-
tems like Bugzilla.
The evaluation of metrics on this data can be used for several purposes:

• Evaluation how the CRM system is used. This means measuring the quality
of the data collected in the CRM system.

• Improvement of awareness and monitoring of current project states. Typical
measurement categories are the workload and the product quality.

• Identifying software development process weaknesses. This includes meas-
uring the software development process quality and speed.

Lars Grammel, Holger Schackmann, Horst Lichter

2 Software Metrik Kongress

• Assessing whether development process changes improved the process or
not. Measurements required to answer this question are the workload, the
product quality and the software development process speed and quality.

It depends on organization-specific circumstances and goals which metrics are of
interest. Furthermore CRM systems used in a commercial context must typically
be adapted to and extended for the specific needs of the organization.
But the capabilities to define metrics in existing CRM tools are restricted. Typi-
cally only a fixed set of common metrics is offered. Adaptability is limited with
respect to the definition of new metrics, and with respect to the adaption to cus-
tomizations of the underlying database scheme. Thus, there is a need for a tool that
supports a flexible definition of metrics and can easily be adapted to changes in
the underlying CRM system.
The tool BugzillaMetrics presented in this paper should fulfil these requirements
[16]. By analyzing a broad range of metrics on change requests, the variation
points within the calculation of these metrics were identified. This served as a ba-
sis for the design of an evaluation algorithm that offers a flexible way to specify a
metric by configuring given calculation elements. Thereby the metric specification
is separated from the way the required information is retrieved. Further on an ab-
straction layer separates the information requirements for the evaluation algorithm
from the way the data is stored in the CRM database.
The tool was developed and used in cooperation with Kisters AG [5]. This com-
pany offers a large portfolio of software products that are developed in software
product lines [10]. Kisters AG uses a modified Bugzilla installation, for example
realizing an extended state management.
The paper is structured as follows: First, a survey of existing CRM tools is pre-
sented. Then, an overview of the requirements and the architecture of the tool are
given, and the evaluation algorithm is described in detail. Afterwards, an example
is shown and results of using the tool are presented.

2 Survey of Existing Tools

Metrics and charts on Change Requests (CRs) are already available in current
CRM systems. They mostly provide common metrics and are furthermore limited
in their adaptability. The development of BugzillaMetrics was based on the eva-
luation and comparison of the following CRM tools:

• Bugzilla [1] is an open-source issue tracker. Version 2.18.6 was evaluated.
• JIRA [4] is a commercial issue tracker. Version 3.7 was evaluated.
• Polarion for Subversion [6] is a commercial application lifecycle manage-

ment tool. It integrates requirements, change and project management tools

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 3

and provides real-time visibility of the development status. Version 2.6.0 of
Polarion was evaluated.

• Code Beamer [3] is a commercial collaborative development platform with
application life cycle management features. Code Beamer 4.2.1 was evalu-
ated.

There exists also a number of approaches in research to analyze CRM data for
several purposes (e.g. visualization of software evolution [15, 12], or change im-
pact analysis [8, 9]). Some approaches try to integrate information from different
sources like source code repository, change request database and mailing-lists (e.g.
to retrieve related change requests [11] or to obtain feedback for software process
improvement [18]). Moreover [19] describes an adaptable architecture for the
mining of source code repositories. Nevertheless we do not know about any ap-
proach for flexible metric definition on change request data.
In the following subsections, the relevant results of the evaluation and analysis are
presented.

2.1 Change Request Filtering

The search functionality provided by the different tools ranges from a simple
keyword search in a fixed set of properties to the specification of the WHERE part
of an SQL select statement.
Whereas a simple keyword search is not sufficient for selecting a specific set of
CRs, SQL statement parts are on a level of abstraction that is too technical to be
used by project or product managers. The most important intermediate level
search features are:

• Text fields can be searched by simple keywords, wildcards and fuzzy
search. Further options for text field searches are starts-with search and
equality search, as well as search by regular expressions.

• Fields of an ordered type like text fields, date fields and number fields can
be searched by range search, as well as by comparison with other values.

• Fields with a finite, fixed set of values can be searched by sets of these val-
ues.

• The basic search terms can be grouped and combined with the boolean op-
erators AND, OR and NOT.

• CRs can be searched by their creation and modification dates especially by
searching CRs with modification or creation dates that are contained in cer-
tain time periods.

• CRs can be searched by their field changes. The original or new value that
is searched can be specified for such a filter.

Lars Grammel, Holger Schackmann, Horst Lichter

4 Software Metrik Kongress

2.2 Reports

 An important distinction for reports is the distinction between snapshot and time
series reports. Snapshot reports calculate values for a specific point of time, most
often the current date. Time series reports calculate values at different time points
in a time period. The different time points in the time period are usually calculated
by splitting it into time intervals of a fixed duration and using the end points of the
intervals as time points.
Because time series reports can be modelled as the aggregation of multiple snap-
shot reports with the same calculation that is cumulative or not, it is only neces-
sary to evaluate snapshot reports, as they can be extended into time series reports.
The following types of snapshot reports can be created by the evaluated tools:

• Splitting. According to some criteria, the CRs are split into groups. The size
of the groups is calculated and displayed in the snapshot report. Splitting
includes counting the number of all CRs as a special case, namely splitting
into one group.
Examples for these kinds of reports are the number of created CRs, the
number of closed CRs, the state distribution of open CRs, or the priority
distribution of all CRs. The splitting can be multi-dimensional, for example
splitting into priority and status.

• Age based reports. Age based reports like the resolution time of closed CRs
or the average age of open CRs require the calculation of the length of a
time period.

• Workload reports. The workload reports are based on the amount of time
spent on CRs and the original and remaining estimations on how much time
must be spent to resolve a CR.

• Derived reports. Reports that calculate derived values based on other calcu-
lations, like the original effort estimation accuracy.

Reports usually have a basic filter that determines the set of CRs that are evalu-
ated. The basic filter can be just the selected project, but it can be an advanced fil-
ter, too.
Another important parameter is the time granularity. It determines the length of
the time period for the snapshot evaluation, for example, that all created CRs on
one day should be counted.

2.3 Limitations

There are several limitations in the evaluated tools. Users can only use a fixed set
of evaluations with slight modifications like the evaluated timespan.

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 5

Metric developers can only change details through the user interfaces. If they want
to create new metrics, they have to implement these by themselves, if the software
is available in source code or offers an appropriate interface, or they have to rely
on the CRM vendor. Thus, developing and experimenting with new metrics is dif-
ficult.
Another limitation is the problem of comparing metric results from different CRM
systems. Slight differences in the metric implementations lead to difficulties in the
comparison of results for similar metrics, if similar metrics are available, which is
often not the case. The comparison problems can result in a loss of historical data
when changing the CRM system.

3 Requirements and Architecture

In this section, we first introduce the basic terms, then the requirements for Bug-
zillaMetrics are described and an overview of the architecture is given. In the next
section, the evaluation algorithm is examined more in detail.

3.1 Basic Terms

A change request is a request to extend or modify a software system. CRs can be
feature requests or bugs. This is determined by the CR type. The CR state is the
property configuration of a CR at a certain point of time.
One property of a CR is the CR status, which models the processing state the CR
is currently in. Commonly used CR status values are ‘new’, ‘assigned’, ‘resolved’,
‘closed’ and ‘reopened’. Other CR properties are for example the assignee, prod-
uct, priority, severity and actual effort properties.
In this paper, an event is an occurrence of a change in the history of a CR, or a
change of the evaluated time interval. Examples for such events are the creation of
a CR, or a change of the assignee of a CR.
An event filter is a filter that accepts or denies events. For example, an event filter
can be defined, that only accepts events which model assignee changes. A state
filter is a filter that accepts or denies CRs based on their state. For example, a
state filter that accepts all CRs which belong to a certain assignee can be defined.
A CR value is a numerical value that is assigned to a CR as the result of the
evaluation of an event by a CR value calculator. An example for a CR value cal-
culator is the incoming rate: all case creation events are counted in a CR value
with the default weight of 1, whereas other events are not counted.

3.2 Requirements

The overall development goal of BugzillaMetrics was to overcome the limitations
of the existing tools concerning metric definition and evaluation.

Lars Grammel, Holger Schackmann, Horst Lichter

6 Software Metrik Kongress

Metric developers should concentrate on the metric models and be able to test new
metrics quickly. Therefore the tool should provide a mechanism for the flexible
specification of a wide range of metrics. Furthermore, it should have a modular
architecture that supports extensions and modifications.
Regarding the difficulties comparing data from different CRM systems, the tool
should provide a mechanism that separates the metric evaluation from the data
source access. By means of such an architecture, different CRM systems can be
configured as data sources and the same metric can be evaluated on their data,
provided the data required for the metric is available.

3.3 Variation Points

Several variation points where the evaluation algorithm is likely to be extended
were identified during the iterative development of BugzillaMetrics. They are ex-
amined in the following, grouped by their likelihood to change.
The following aspects are very likely to change:

• Weights are used in the calculation of CR values on certain events. New
weights are likely to be added when new calculations for CR values are re-
quired.

• Data sources are likely to be adapted to a changed database scheme when
the tool is ported to a new version of the CRM system or a different CRM
system.

The following aspects are somewhat likely to change:
• New CR state filters, for example to support range checks on number or

date fields, might be added.
• Events and the corresponding event filters might be added when new data

sources are added.
• Group calculation operations to support more complex statistical or

mathematical operations might be added to support new metric calculations.
The following aspects might change, although they are expected to be stable:

• New CR value calculators (see subsection 4.3) might be added to support
calculations that are out of the scope of the available calculators.

• Groupings. The way the results are grouped might be changed. This in-
cludes changing the order and the available group parameters.

BugzillaMetrics is designed in a way that allows these variation points to change
without affecting the evaluation algorithm and the data structures. This was
achieved by concentrating the complete algorithm configuration in a configuration

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 7

part and restricting the dependencies of the evaluation algorithm to the interfaces
of the variation points, not their implementations.

3.4 General Architecture

The tool architecture defines three different components (see Figure 1):
• Core component. The core component contains the evaluation algorithm

which calculates the metric result for a metric specification. Both the metric
result and the metric specification are XML documents.

• Chart component. The chart component creates chart images from the met-
ric results of the core component and an XML chart specification.

• Web-Frontend. The web frontend provides a user interface for interaction
with the core and chart components.

BugzillaMetrics is integrated in an existing environment with a Bugzilla installa-
tion. The core component uses the Bugzilla database to retrieve the values for the
CRs. The database is accessed for reading purposes only. The users access the web
frontend to get the results for their metrics.

Figure 1: Integration of the architecture in the existing environment

4 The Evaluation Algorithm

In this section, the most important parts of the evaluation algorithm are outlined.
The main characteristics of the algorithm are a flexible parametrization mecha-
nism, an event driven design that calculates time series data, transparent execution
optimization and an abstraction of the data sources.

Lars Grammel, Holger Schackmann, Horst Lichter

8 Software Metrik Kongress

4.1 Overview and Steps

The evaluation algorithm can be divided into a sequence of the following main
steps:

1. The XML metric specification is parsed and the object structure of the
metric calculation is configured. This step includes the configuration of
the CR value calculators and the reading of the group parameters and
basic filters.

2. It is calculated which information is required for the metric evaluation.
3. Objects for the CRs that are included in the basic filter are created and

initialized with the current values for the required fields.
4. All CR values are calculated by processing the event sources and calling

the configured CR value calculators (see Subsection 4.3) with the cre-
ated events. The CR values are classified in a tree structure that is simi-
lar to the result structure.
The event source processing creates an event stream that starts with the
newest relevant event and goes back in time to the oldest relevant event.
The CR states are updated accordingly, so each CR has the state it had
when the event occurred.

5. The group values for the CR values created in the previous step are cal-
culated by calling the group value calculators with the bottom layer of
the tree structure that contains the CR values.

6. The XML result element for the group values that are stored in the CR
value container tree is created.

4.2 Parametrization

The evaluation algorithm (see Figure 2) can be parametrized in several ways by
the metric specification:

• The basic filter determines which CRs will be considered in the evaluation.
The basic filter is a state filter.

• State filters provide a configurable filtering on CR states like the product,
assignee, component and so on. They can be combined with AND and OR
expressions.

• Event filters provide a configurable filtering of events. Event filters are
used to configure how CR value calculators react on events.

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 9

Figure 2: Parametrization of the evaluation algorithm

• The group parameter determines how the evaluated CRs will be parti-
tioned into CR groups before the group themselves are evaluated. Examples
are product, component or priority. A nested grouping is possible, for ex-
ample group by products on the first level and by their components on the
second level.

• A CR value calculator determines how the value for a CR on a certain
event is calculated. The algorithm can be parametrized with more than one
CR value calculator. There are different types of CR value calculators,
which use state filters, event filters and weights. Weights are calculations
based on the state of CRs on a certain event.

• Group value calculations determine how the result value for a group is
calculated from the results of the CR value calculators for the CRs in that
group. The results from the CR value calculators can be combined using
mathematical operations, both operations that work on sets of CR values
like sum and common operations like division. The algorithm can be pa-
rametrized with more than one group value calculation.

• Evaluation time period and time granularity, i. e. the time periods for
which group values are calculated, for example weeks or months.

Lars Grammel, Holger Schackmann, Horst Lichter

10 Software Metrik Kongress

Figure 3: Design of the CR value calculators

4.3 CR Value Calculators

CR value calculators (see Figure 3) calculate CR values on certain events. They
are a core part of the evaluation algorithm, filtering and transforming the event
stream to a set of CR values. The following CR value calculators are predefined:

• CountsEventsCalculator is the most flexible calculator. It contains an
event filter that selects the events for which CR values are calculated. The
calculation of the numerical values of the CR values is delegated to the
weight the calculator is parametrized with. Examples where this calculator
is used are the incoming rate or the outgoing rate.

• CountEventsUntilCalculator calculates the number of times an event has
occurred for a CR until another event happened. Both events are specified

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 11

by an event filter. An example where this calculator is used is the number of
assignee changes before resolution metric.

• IntervalLengthCalculator calculates the length of the time interval in days
between two events that happen on a CR. Both events are specified by an
event filter. The interval length calculator can be used to calculate the age of
a CR before it switches to the processing state for the first time, for exam-
ple.

• StateResidenceTimeCalculator calculates the time in days a CR was in a
certain state before the time point of a certain event. At such an event, a CR
value is calculated. The event is specified by an event filter and the state is
specified by a state filter. This calculator is used in the average processing
time metric, for example.

Using event filters to configure the CR value calculators has two advantages:
• The different concerns of event filtering and calculating CR values are se-

parated. This especially provides independent extensibility of the event fil-
ter variation point and the CR value calculator variation point.

• Flexible configuration of the CR value calculators with different event fil-
ters in the metric specifications.

Weights are used in the CountEventsCalculator to calculate a value for a CR
state. This allows a flexible configuration with different weights and is in fact a
separation of concerns between the decision whether to calculate a value or not
and the calculation itself. Because it is likely that new calculations are added, the
effort of introducing them is reduced by this design. Examples for available
weights are the DefaultWeight that returns the value 1 for each CR, the AgeIn-
DaysWeight that returns the age of a CR on the occurrence of the event in days,
and the EstimatedRemainingWorkloadWeight.

4.4 Information Requirement Abstraction

The goal of the information requirement abstraction design is to achieve inde-
pendence of the use of the CR fields from the way they are stored and retrieved.
This is especially essential if the underlying CRM system changes. The different
concerns of using CR fields and retrieving their values are separated by this de-
sign.
InformationConsumers (see Figure 4) are objects that require information about
certain CR fields. The following classes are InformationConsumers:

• CRValueCalculators. They need information about the fields based on
which they calculate values. Furthermore, they need the information re-
quired by their event filters.

Lars Grammel, Holger Schackmann, Horst Lichter

12 Software Metrik Kongress

• StateFilters. They require information about the fields their CR state filter-
ing is based on.

• EventFilters. They may include state filters and require the information re-
quired by these state filters.

• GroupParameters. They require information about the field for which the
grouping splits the CR values into different groups.

Figure 4: Design of the information requirements

InformationConsumers have InformationRequirements. There are two types
of InformationRequirements: complete and partial information requirements.

• PartialInformationRequirements model the need for information about
certain values of a given field. For example, for a state filter that filters on a
certain product, not all information about product values in CRs is neces-
sary, only information that affects that product.

• CompleteInformationRequirements model the need for information
about a certain CR field. This is the case for group parameters, which do
not know which groups there are in advance.

All InformationRequirements are directed on one specific CR field. For exam-
ple, a group parameter that creates the groups according to the assignee has a
CompleteInformationRequirement about the assignee field, which is a regular
field stored in the Bugzilla bugs table.
For the different types of CR field representations in the database, there are differ-
ent types of fields:

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 13

• Regular fields represent CR fields that are stored as columns in the Bugzilla
bugs table.

• The actual effort field represents the actual effort value reconstructed from
the CR history.

• In the original implementation of the tool for a customized Bugzilla, there
were several other field types.

A CR object maps fields to the current values of these fields. It is independent
from the field implementation and the data retrieval.

5 Metric Specification Example

To give an impression how the metric specifications which are evaluated by Bug-
zillaMetrics look like, the backlog management index (BMI) [17] is used as ex-
ample. It is calculated as follows:

The metric specification for the BMI is shown in Figure 5. It is divided into five
different parts. We will focus on the basic filter, the group evaluation and the CR
value calculator parts here. The other sections of the metric specification mostly
deal with the evaluated time period and the grouping of the CR values.
The basic filter XML element contains the specification of a state filter. In the ex-
ample, it is an OR filter which contains two filter specifications on the product
field of the CRs. Therefore, all CRs which are or have been in the products `Prod-
uct A’ and ‘Product B’ are accepted by the basic filter. Only these CRs are selected
from the database and further evaluated by the algorithm.
The CR value calculators XML element contains the specifications for the differ-
ent CR value calculators that are evaluated by the algorithm. In the example, two
CR value calculators that count events are defined, one for the incoming rate and
one for the outgoing rate. Each CR value calculator has an identifier by which it
can be referenced from the group evaluation specification.
The CR value calculator for the incoming rate counts the CR creations. Each CR
creation is counted by the default weight 1.
The CR value calculator for the outgoing rate counts CR status transitions from
the set of unfinished work CR states to the set of finished work CR states.
The group evaluation is a calculation that is named BMI. For each CR value calcu-
lator, the CR values are summed up. The sum of the outgoing rate CR value calcu-
lator is divided by the sum of the incoming rate CR value calculator.

Lars Grammel, Holger Schackmann, Horst Lichter

14 Software Metrik Kongress

<metric>
 <basicFilter>
 <or>
 <value field="product">Product A</value>
 <value field="product">Product B</value>
 </or>
 </basicFilter>
 <groupingParameters>
 <fieldGrouping>product</fieldGrouping>
 </groupingParameters>
 <groupEvaluations>
 <calculation name="BMI" >
 <divide>
 <sum crValueCalculator="outgoing" />
 <sum crValueCalculator="incoming" />
 </divide>
 </calculation>
 </groupEvaluations>
 <crValueCalculators>
 <countEvents id="incoming">
 <event>
 <create/>
 </event>
 </countEvents>
 <countEvents id="outgoing">
 <event>
 <transition field="status">
 <from>NEW</from>
 <from>REOPENED</from>
 <from>ASSIGNED</from>
 <to>RESOLVED</to>
 <to>CLOSED</to>
 </transition>
 </event>
 </countEvents>
 </crValueCalculators>
 <evaluationTimePeriod>
 <start>2006-08-01</start>
 <end>2007-08-01</end>
 </evaluationTimePeriod>
</metric>

Figure 5: Backlog management index specification

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 15

6 Practical Results

BugzillaMetrics was used in practice on a company database containing about
20,000 CRs, aggregated over the past five years, with the most active product con-
sisting of about 10,000 CRs.
Discussions of the metrics and charts created by the tool with the users gave a first
impression of the advantages and problems of the tool and its usage.
The already known advantages of using metrics in general are, amongst others,
that vague assumptions are supported by concrete figures, and that it can be con-
trolled whether process changes lead to an improved process or not [7]. Besides
these, another important advantage is the specification of new metrics. Metrics can
be validated and adjusted without major programming, concentrating the main
effort on the model of the metric, not its implementation.
Furthermore, because of its modular architecture and the separation of the data
source, porting the tool from a modified Bugzilla to a standard Bugzilla was rather
easy.
But it also showed that specifying metrics on CRM data bears some pitfalls in
practice, in addition to the general pitfalls of metrics already observed in literature
like manipulation of the data base [13] and the fact that interpretation is a must
[14, 20]. Examples for problems that occur in practice are given in the following.

6.1 Comparing incoming and outgoing rate

There are some pitfalls comparing the incoming and outgoing rate, which then as
consequence affect the BMI. If the incoming rate is defined as the number of CRs
created in a time interval, and the outgoing rate is defined as the number of CRs
resolved in a time interval, there are the following problems:

• CRs can be resolved multiple times if they are reopened.
• CRs that are created outside the scope of the basic filter and moved into its

scope can be resolved and counted in the outgoing rate, but are not counted
in the incoming rate. An example for this is the scenario when CRs are fil-
tered for a given component, but some CRs were created in another compo-
nent and then moved into the filtered component.

• CRs that are created inside the scope of the basic filter and moved outside
its scope are counted in the incoming rate, but not in the outgoing rate.

This problem can be solved by changing the metric specification to take care of all
these effects. For example, CRs moved outside the scope of the basic filter can be
added to the outgoing rate.

Lars Grammel, Holger Schackmann, Horst Lichter

16 Software Metrik Kongress

6.2 Interpretation depends on CR selection

The defect rate can be defined as

Using it on different sets of CRs from the same product yields different results.

• The defect rate of all CRs, i.e. the open and closed CRs, shows how much
defects there were in the complete product history compared to enhance-
ments.

• The defect rate of the open CRs shows how much open defects there are in
relation to open enhancements. This rate is often lower than the defect rate
of all CRs, because defects are often smaller and fixed faster than enhance-
ments. Furthermore, low-priority enhancements tend to accumulate over
time.

• The defect rate of the CRs resolved in a time interval shows how much de-
fects are fixed compared to completed enhancements in that time interval.
This rate is usually higher than the defect rate of the open CRs for the same
reasons as above.

This example shows that it is important in general to consider not only how a met-
ric is calculated on a higher level, but which CRs are selected on which events,
too. This is especially relevant when interpreting the metric results.

7 Summary and Future Work

In this paper, the main concepts of BugzillaMetrics, a tool for the flexible evalua-
tion of metrics on CRM system databases, have been presented.
The starting point was the evaluation of existing CRM systems. Based on those
results, a design approach for a metric evaluation tool has been outlined. The most
important design concepts are the separation between the metric specification and
the data retrieval, and the flexible configuration of metrics. The efficiency optimi-
zations of the evaluation algorithm have been shown, as well as practical results
from the usage of BugzillaMetrics.
Further work on the tool includes the development of a better user interface and
algorithm improvements. The algorithm improvements are switching to a back-
ward-forward calculation instead of a backward calculation to improve memory
efficiency, and changes to the CR value classification to fix calculation problems
with CRs that change their classification in their history.
BugzillaMetrics is published as an open-source project [2].

BugzillaMetrics - A tool for evaluating metric specifications on change requests

MetriKon 2007 17

Acknowledgements

This work was supported by Kisters AG, Aachen.

References

1. Bugzilla 2.18.6. http://www.bugzilla.org.
2. BugzillaMetrics. http://www.bugzillametrics.org.
3. Code Beamer 4.2.1. http://www.intland.com.
4. JIRA 3.7. http://www.atlassian.com/software/jira/.
5. Kisters AG. http://www.kisters.de.
6. Polarion for Subversion 2.6. http://www.polarion.com.
7. V. Basili, G. Caldiera, and H. Rombach. The goal question metric approach. Encyclo-

pedia of Software Engineering, pages 528–532, 1994.
8. G. Canfora and L. Cerulo. Impact analysis by mining software and change request

repositories. In 11th IEEE International Symposium on Software Metrics (METRICS
2005), page 29. IEEE Computer Society, 2005.

9. G. Canfora and L. Cerulo. Supporting change request assignment in open source de-
velopment. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied com-
puting, pages 1767–1772, New York, NY, USA, 2006. ACM Press.

10. P. C. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Ad-
dison Wesley. 2001.

11. D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A project memory
for software development. IEEE Trans. Software Eng., 31(6):446–465, 2005.

12. M. D’Ambros, M. Lanza, and M. Pinzger. "A Bug’s Life" - Visualizing a Bug Data-
base. In Proceedings of VISSOFT 2007 (4th IEEE International Workshop on Visual-
izing Software For Understanding and Analysis), pages 113–120. IEEE CS Press, Ju-
ne 2007.

13. T. DeMarco. Why Does Software Cost So Much? Dorset House Publishing, New
York, 1995.

14. N. E. Fenton and S. L. Pfleeger. Software Metrics. PWS Publishing Company, Bos-
ton, MA, 1996.

15. M. Fischer and H. Gall. Visualizing feature evolution of large-scale software based
on problem and modification report data. Journal of Software Maintenance,
16(6):385–403, 2004.

16. L. Grammel. Development of a tool for the evaluation of change requests. Diploma
thesis, RWTH Aachen University, 2007.

17. S. H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley,
Reading, MA, 1995.

18. M. Ohira, R. Yokomori, M. Sakai, K. Matsumoto, K. Inoue, and K. Torii. Empirical

Lars Grammel, Holger Schackmann, Horst Lichter

18 Software Metrik Kongress

project monitor: A tool for mining multiple project data. In Mining Software Reposi-
tories Workshop, 26th International Conference on Software Engineering (Edin-
burgh, Scotland), 2004.

19. G. Robles, J. Gonzalez-Barahona, and R. Ghosh. Gluetheos: Automating the retrieval
and analysis of data from publicly available software repositories. In Mining Soft-
ware Repositories Workshop, 26th International Conference on Software Engineering
(Edinburgh, Scotland), 2004.

20. D. H. Rombach, L. C. Briand, and C. M. Differding. Practical guidelines for meas-
urement-based process improvement. Software Process: Improvement and Practice,
2(4), 1997.

