
Process Assessment by Evaluating Configuration and
Change Request Management Systems

Holger Schackmann, Horst Lichter
RWTH Aachen University

Research Group Software Construction
Ahornstr. 55, 52074 Aachen, Germany

{schackmann,lichter}@swc.rwth-aachen.de

ABSTRACT

This paper presents an approach for assessing process qualities
based on evaluating metrics on change request and configuration
management systems. It is based on user-defined quality models
to enable quality evaluations customized to the information needs
of an organization. Further on the concept of declarative metric
specifications is introduced, which enables a precise definition of
metrics on an appropriate abstraction level. With the
corresponding tool support given in the QMetric tool suite, this
concept simplifies development and validation of the metrics
needed for quality evaluations.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics,
product metrics.

General Terms
Measurement, Management

Keywords
Quality Modeling, Declarative Metric Specification, Mining
Software Repositories, Software Product Management

1. INTRODUCTION
Managing a large portfolio of software products requires
continuous monitoring of project status and process quality.
Collecting the required data by regularly status reporting can be
expensive and intrusive and furthermore ignores the past history
of the process [1]. This motivates mining data from routinely
collected software repositories like change request management
(CRM) or software configuration management (SCM) systems.
Naturally this data does not provide a holistic view on the
development process, but it offers valuable information to assess
certain characteristics of the process.

Currently the historic data available in these systems is only used
in a limited way for evaluating process qualities. Existing change
request management systems usually provide a number of fixed
metric evaluations [2]. Metrics appropriate for organization-
specific information needs must be implemented in custom scripts
[3]. There also exists a number of tools for generating metrics or
visualizations based on version control systems [4][5][6].
However there is no generalized approach on assessing process
quality characteristics on a higher level based on data available in
software repositories. In order to provide such an approach one
has to face several challenges:

How to relate higher level quality characteristics to metrics?
Quality characteristics of interest are in general derived from the
objectives of the organization [7]. Change request management
systems are typically customized to organization specific needs.
Hence appropriate metrics for evaluating quality characteristics
depend on the designated process and the data available.
Moreover guidance must be provided on how to interpret
resulting measurement values with respect to a quality
characteristic. Thus a conceptual base is needed on how to model
the relationship between quality characteristics and underlying
metrics.

How to develop and validate metrics? Approaches like GQM
[8] provide a general framework for deriving metrics. However
specifying a metric in detail bears many pitfalls due to the
complexity of the underlying objects of measurement [9]. Hence
a systematic procedure for developing and validating metrics is
required.

How to mine software repositories in a flexible way? Apart
from the methodological questions appropriate tool support for
metric evaluation must be available. In order to offer a general
approach that is applicable independent from a specific tool
infrastructure, it is necessary to collect metrics from any common
CRM and SCM system.

Typically tools are targeted at a single source of information (e.g.
a specific change request management system), and provide only
a number of fixed metric evaluations with limited adaptability [2].
Metric tools for SCM systems do not consider traceability links
between change requests and changes in the source code.
Developing custom scripts for the required metric evaluations is
time-consuming and costly. Hence a more generic approach for
metric evaluation is needed that can adapt to different underlying
systems and supports a wide range of metric definitions.

37

Silver
WUP 2009

hschack
Text Box
© ACM, 2009. This is the authors' version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proceedings of the Warm Up Workshop for ACM/IEEE ICSE 2010.

This paper presents concepts that are targeted to tackle these
questions, and describes a respective approach for assessing
process qualities based on mining CRM and SCM systems.
Moreover it will be pointed out how these concepts had been
implemented in a tool suite called QMetric, which provides a
generic metric calculation engine, and an editor and evaluation
tool for user-defined quality models.

2. USER-DEFINED QUALITY MODELS
In order to relate metrics to improvement goals we use
hierarchical quality models that lean on the approach of
bidirectional quality models introduced by Simon et. al [10]. This
section first introduces the related terminology (see Figure 1).
Then it is discussed how individual measurement values can be
interpreted and aggregated with respect to higher level quality
characteristics.

Figure 1. Hierarchical quality model

On the one side the quality characteristics reflect high-level
requirements on the quality. In terms of the ISO/IEC 15939
standard these quality characteristics correspond with information
needs derived from the business, organizational, regulatory,
product or project objectives [11]. An example of a quality
characteristic is planning precision which can be subdivided into
the quality characteristics: adherence to schedule, adherence to
planned effort, and process transparency.

On the other side the quality properties denote objective
attributes of an entity (i.e. product, process, or system), that can
be used to distinct between the considered entities, and can be
objectively and quantitatively distinguished by automated means.
Examples for such quality properties are the total number of
defects, the frequency of assignee changes of a change request, or
the number of reopened change requests.

The quality properties will be used in a bottom-up fashion to form
quality indicators. A quality indicator describes how a number
of quality properties can be interpreted with respect to a quality
characteristic. Hence the quality indicators bridge the gap
between the technical view of quality properties and the abstract
view of the quality characteristics.

The question is how the measurement values of quality properties
can be aggregated to high-level quality characteristics. The target
is to provide a general approach for quality models for evaluating
process quality based on mining software repository data.
Existing approaches in the area of metric-based quality evaluation
(e.g. the evaluation of internal software quality based on code
metrics) are typically based on a fixed quality model with limited
adaptability (e.g. adjusting weights of the quality indicators).

In our view the evaluation of process quality needs a more
flexible approach for quality models due to organization-specific
improvement goals, and due to the heterogeneity of the
underlying metrics. In the following we will describe the concepts
for user-defined quality models that are implemented in the
QMetric tool suite.

In general the model is a directed acyclic graph (DAG). Source
nodes of the quality model represent quality indicators. Quality
properties are defined using a declarative metric specification (see
section 3), that defines how metric values are retrieved from
underlying CRM and SCM systems. Hence a metric specification
must be defined for each quality indicator.

Inner nodes and sink nodes of the quality model represent quality
characteristics. For each quality characteristic a value
specification must be defined that describes how a value of the
quality characteristic is calculated based on the values of the
nodes connected by incoming edges as arguments. The value
specification is defined as follows: A unary function is applied to
each argument. Available functions are the identity function, a
threshold function, normalization to a certain value interval, a
user-defined custom mapping, or the assignment of a value based
on quantile classification with respect to a set of empiric values.
Then a second function is applied to combine the inputs from
different incoming edges. Typically a linear equation is used to
express different weighting of the inputs. Again the quantile
classification can be applied for the result of this function.

The available functions enable to express a wide range of quality
models. The quantile classification can be used to guide
interpretation of the results according to the value distribution in a
peer group of measured entities. The fulfillment of an envisaged
quality level can for example be modeled by using a threshold
function at a sink node of a DAG. Different quality levels can
then be modeled in sub graphs of the DAG with tightened
thresholds in each level. However the model is open to implement
additional functions if required. Further development of
respective models in our ongoing case studies will show weather
the building blocks listed above offer sufficient expressiveness.

An evaluation based on the quality model enables the systematic
comparison of the process quality in a certain time interval to
earlier time intervals, and the analysis of the development
processes in a portfolio of software products.

3. DECLARATIVE METRIC
SPECIFICATIONS
One of the basic ideas of our approach is that the developer of a
metric should concentrate on the model of a metric, not on the
way how the metric is calculated from underlying software
repositories. This is realized by a declarative language for metric
specifications that abstracts from the way the information is
stored in specific CRM or SCM systems [2].

The basic building blocks for these specifications are filters for
information fields of a change request (e.g. its severity, status, or
target milestone), and events that occur in the history of a change
request (e.g. change of the assignee, committing related code, or
reopening a resolved request). Filters and events can be combined
with Boolean operators.

Each metric specification contains a base filter that defines which
change requests are considered during the calculation (e.g. only
change requests that belong to a certain product). Further on the
evaluation time period and the time granularity (e.g. month or
year) are defined.

 Then one of several predefined value calculators can be applied
to calculate a value for individual change requests in each time

38

interval according to the given time granularity. Examples of
value calculators are the calculation of the length of a time
interval between two specified events in the lifecycle of a change
request, the calculation of the time a change request resides in a
certain state, or the calculation of the number of occurrences of
certain events during a time period. In the latter case an optional
weight can be applied (e.g. a weighting by the severity of the
change request, or by its estimated remaining workload).

The outcome of these value calculators can be combined with
operations like sum, maximum, or mean value to calculate a result
for a certain time interval. This approach offers a large flexibility
for the specification of metrics. Furthermore the metric
specification is separated from the way the required information is
retrieved.

The concept is implemented in the generic metric calculation
engine of the QMetric tool suite [12]. By design of the tool the
access to data sources (i.e. concrete CRM or VCS systems) is
separated from the metric evaluation algorithm. It operates on
abstract fields that are provided by wrappers for the underlying
data sources. Currently such wrappers had been implemented for
the CRM systems Bugzilla and Mantis, and for CVS and
Subversion [13]. Wrappers for CVS and Subversion are based on
the Scmbug tool which offers a generic solution to link changes in
a software configuration management system to related change
requests [14]. This does not only enable to define metrics that
consider SCM events (e.g. commit changes to files, add a branch)
and size information (e.g. size of a code change) but also metrics
that combine information from CRM and SCM systems.
Moreover the QMetric tool is designed to enable extensions of the
evaluation algorithm, like the evaluation of additional fields in a
customized change request tool, or the extension with new value
calculators and weights.

4. DEVELOPING AND VALIDATING
METRICS
The usage declarative metric specifications with appropriate tool
support leverages the level of abstraction when developing metric
definitions. Precise description in a declarative language improves
communication on the metric definition. Thus experimenting with
metrics and adjusting them is faster and easier.

But, first experience has revealed certain pitfalls during the
development of metric definitions [2]. Typical examples are
considering not all relevant events related to the intended metric,
improper interpretation of the status workflow, or deprecated data
in a change request system due to inconsistent usage of input
fields. This is the motivation for a structured approach for
developing metrics on CRM and SCM that had initially been
presented together with a case study on process quality in the
Eclipse project [9]. We will briefly summarize the steps
performed for the development of a metric:

1. Deriving of process quality characteristics from the
objectives of the organization [7]. These characteristics can
be refined stepwise.

2. Improvement goal based identification of corresponding
quality properties: In order to identify measurable quality
properties it is necessary to analyze the way the CRM and
SCM systems are used, e.g. it must be examined what is the

typical workflow of a change request, and which information
is collected on a change request. Then quality properties
need to be defined where some relation to the quality
characteristics is conjectured. The plausibility of the metric
can then be validated by inspecting the results calculated for
individual change requests and examining whether the
history of a request conforms to the envisaged interpretation.

3. Definition of quality indicators that enable comparability
between projects: The quality indicator must define how
measurement values related to individual change requests
(e.g. time until a change request is resolved, or granularity of
related changes in the SCM system) can be aggregated. An
appropriate quality indicator must eliminate interfering
factors like age and size of a project, and it must be ensured
that the assignment of the measurement values to time
intervals stands in a temporal connection to potential causes
in the process in order to prevent misleading interpretations.
The QMetric tool suite provides a number of constructs in
the metric specifications that facilitate different kinds of
normalization of the metric results (e.g. counting the
percentage of change request whose residence time in a
status of the workflow hits a certain threshold, instead of
using the average residence time). Again these indicators can
be included as aggregated calculation in a declarative metric
specification. The results can then be validated by comparing
metric results of projects to expert assessments of the process
of these projects.

The proposed procedure facilitates an iterative refinement of
metric definitions and enables to detect problems early due to the
stepwise validation.

5. EXPERIENCES AND OUTLOOK
Applicability of the approach to quality modeling was evaluated
in a case study which analyzes the quality of the change request
process in different Eclipse projects [9].

The tool BugzillaMetrics which encompasses the QMetric
evaluation engine and a web-based metric query tool that provides
wizards for defining metric specifications on a graphical user
interface, had been published open source. BugzillaMetrics has
found a community of users, which points out usability of
declarative specifications, as well as the practical relevance of the
approach. The main characteristics of the QMetric tool suite are
the following:

• General infrastructure for the evaluation of metrics on
software repositories data like CRM and SCM systems.

• Flexible tool support for the definition of quality models and
automatic evaluation based on software metrics.

Based on these results a quality model for open source projects is
currently being developed that is oriented at typical goals of
established open source projects, like user involvement and
planning stability. This quality model distinguishes several
quality levels of the change request process in an open source
environment. Naturally it is not possible to achieve a holistic
evaluation, since not every aspect of the process is reflected in the
software repositories. Such a model would be complementary to
manual approaches for assessing the maturity of open source
projects [15][16].

39

In our ongoing work we apply the approach for analyzing the
development process of an industrial partner. The main targets are
the following:

• Improved transparency in a large software product portfolio
in order to support planning and resource allocation.

• Identification of development process weaknesses and
assessment of changes in the process.

Hence it needs to be analyzed how the information needs of
different roles (e.g. project manager or product portfolio manager)
can be reflected in quality models, and how the evaluation results
can be visualized in an understandable way. This extended study
will help to evaluate the benefits and limitations of the proposed
approach in practice.

6. ACKNOWLEDGMENTS
We would like to thank Kisters AG, Aachen for supporting the
development of BugzillaMetrics.

7. REFERENCES

[1] Cook, J. E., Votta, L. G., and Wolf, A. L. 1998. Cost-

Effective Analysis of In-Place Software Processes. IEEE
Trans. Softw. Eng. 24, 8 (Aug. 1998), 650-663. DOI=
http://dx.doi.org/10.1109/32.707700

[2] Grammel, L., Schackmann, H., and Lichter, H. 2007.
BugzillaMetrics: an adaptable tool for evaluating metric
specifications on change requests. In Ninth international
Workshop on Principles of Software Evolution: in
Conjunction with the 6th ESEC/FSE Joint Meeting
(Dubrovnik, Croatia, September 03 - 04, 2007). IWPSE '07.
ACM, New York, NY, 35-38. DOI=
http://doi.acm.org/10.1145/1294904.1294909

[3] Kanat-Alexander, M. 2008. The Bugzilla Survey – August
2008. https://wiki.mozilla.org/Bugzilla:Survey

[4] Gall, H. C. and Lanza, M. 2006. Software evolution: analysis
and visualization. In Proceedings of the 28th international
Conference on Software Engineering (Shanghai, China, May
20 - 28, 2006). ICSE '06. ACM, New York, NY, 1055-1056.
DOI= http://doi.acm.org/10.1145/1134285.1134502

[5] Kagdi, H., Collard, M. L., and Maletic, J. I. 2007. A survey
and taxonomy of approaches for mining software
repositories in the context of software evolution. Journal of
Software Maintenance and Evoution.. 19, 2 (Mar. 2007), 77-
131. DOI= http://dx.doi.org/10.1002/smr.344

[6] Draheim, D. and Pekacki, L. 2003. Process-Centric
Analytical Processing of Version Control Data. In
Proceedings of the 6th international Workshop on Principles
of Software Evolution (September 01 - 02, 2003). IWPSE.
IEEE Computer Society, Washington, DC, 131.

[7] Ebert, C. and Dumke, R. 2007. Software Measurement:
Establish - Extract - Evaluate - Execute. Springer Verlag,
Berlin.

[8] Basili, V., Caldiera, G. and Rombach, H.D. 1994. The Goal
Question Metric Paradigm. In: Encyclopedia of Software
Engineering. John Wiley & Sons, 528-532.

[9] Schackmann, H. and Lichter, H. 2008. Comparison of
Process Quality Characteristics Based on Change Request
Data. In Proceedings of the international Conferences on
Software Process and Product Measurement (Munich,
Germany, November 18 - 19, 2008). R. R. Dumke et al., Eds.
Lecture Notes In Computer Science, vol. 5338. Springer-
Verlag, Berlin, Heidelberg, 127-140. DOI=
http://dx.doi.org/10.1007/978-3-540-89403-2_12

[10] Simon, F., Seng, O. and Mohaupt, T. 2006. Code Quality
Management, Dpunkt-Verlag, Heidelberg.

[11] ISO/IEC 15939 Systems and software engineering –
Measurement Process, ISO, Geneva, 2007.

[12] Schackmann, H., Jansen, M., Lischkowitz, C. and Lichter, H.
2009. QMetric - A Metric Tool Suite for the Evaluation of
Software Process Data. In Companion Proceedings of the
31th international Conference on Software Engineering
(Vancouver, Canada, May 16-22, 2009) ICSE’09, ACM,
New York, NY.

[13] BugzillaMetrics project, www.bugzillametrics.org
[14] Makris, K., Ryu, K.D. 2005. Scmbug: policy-based

integration of software configuration management with bug-
tracking. USENIX Annual Technical Conference, USENIX
Association, Berkeley, CA, 11-22.

[15] Ciolkowski, M. and Soto, M. 2008. Towards a
Comprehensive Approach for Assessing Open Source
Projects. In Proceedings of the international Conferences on
Software Process and Product Measurement (Munich,
Germany, November 18 - 19, 2008). R. R. Dumke et al., Eds.
Lecture Notes In Computer Science, vol. 5338. Springer-
Verlag, Berlin, Heidelberg, 316-330. DOI=
http://dx.doi.org/10.1007/978-3-540-89403-2_26

[16] Golden B.: Open Source Maturity Model © Navica,
http://www.navicasoft.com/pages/osmmoverview.htm

40

