
Development of a Tool for the
Evaluation of Change Requests

Diploma Thesis

Author: Lars Grammel

Date submitted: February 22, 2007

First Reviewer: Prof. Dr. rer. nat. Horst Lichter
Second Reviewer: Prof. Dr.-Ing. Stefan Kowalewski

Supervisor: Dipl.-Inform. Holger Schackmann

Created at: Research Group Software Construction
Prof. Dr. rer. nat. Horst Lichter
Faculty of Mathematics, Computer Sciences and Natural Sciences
RWTH Aachen University

Hiermit versichere ich, dass ich die Arbeit selbständig verfasst und keine an-
deren als die angegebenen Hilfsmittel benutzt habe.

Aachen, 22. Februar 2007

Contents

1 Introduction 7

2 Basic Terms 11
2.1 Change Request Management 12
2.2 Software Metrics . 12
2.3 Goal-Question-Metric (GQM) Approach 14
2.4 Charts . 15

3 Evaluation of Existing Tools 19
3.1 Bugzilla . 20
3.2 JIRA . 25
3.3 Polarion . 29
3.4 Code Beamer . 32
3.5 Summary . 36

4 Requirements 41
4.1 Introduction . 41

4.1.1 Goal and intention of the product 41
4.1.2 Users of the product 42
4.1.3 Assumptions and dependencies 42

4.2 Concept Maps . 42
4.2.1 Change Request Management 42
4.2.2 Case . 43
4.2.3 Case State . 45
4.2.4 Event . 49

4.3 Functional Requirements . 49
4.3.1 Basic Algorithm Parameters 49
4.3.2 Metrics . 51
4.3.3 Metric Categories . 53
4.3.4 Charts . 55
4.3.5 Web Frontend . 55

3

4 Contents

4.4 Non-Functional Requirements 55
4.4.1 Performance Requirements 55
4.4.2 Maintenance Requirements 56
4.4.3 Security Requirements 56
4.4.4 Other Requirements 56

5 Software Process 57
5.1 Project Constraints . 57
5.2 Project Constraint Consequences 58
5.3 Process Description . 59

5.3.1 Initial Requirements Engineering 60
5.3.2 System Implementation 61
5.3.3 System Documentation and Rollout 63

6 System Architecture 65
6.1 General Architecture . 66
6.2 Core Algorithm Sequence . 68
6.3 Core Algorithm Variation Points 70
6.4 Case State Filtering . 73
6.5 Event Creation . 75
6.6 Event Filters . 77
6.7 Case Value Calculation . 79
6.8 Case Value Classification . 82
6.9 Group Evaluation . 86
6.10 Information Requirement Abstraction 89
6.11 Data Source Abstraction . 93
6.12 SQL Access Abstraction . 94
6.13 Efficiency Optimizations . 97
6.14 Test Framework . 99
6.15 Chart Module . 102
6.16 Frontend . 103

7 Evaluation 105
7.1 Software Process Evaluation 105

7.1.1 Process Classification 105
7.1.2 Process Characteristics 106

7.2 Software Product Evaluation 107
7.2.1 Functionality . 107
7.2.2 Reliability . 108
7.2.3 Usability . 108
7.2.4 Efficiency . 109

CONTENTS 5

7.2.5 Maintainability . 109
7.2.6 Portability . 111

7.3 Metric and Usage Evaluation 111

8 Summary and Perspective 115

A Used Software 119

Bibliography 121

6 Contents

Chapter 1

Introduction

The main goal of software engineering is the efficient development and main-
tenance of high quality software systems. In order to achieve this, software
systems as well as software processes must be evaluated methodically. The
results of these evaluations can then be used for controlling, managing, plan-
ing and improving the development of software systems.

An appropriate data entry as well as measurements that are based on it
provide a well-founded basis for such evaluations. In the case of software
systems, a lot of data is automatically available in the form of source code.
Other data like the number of errors must be collected separately. In the
case of software processes and used resources the data must be acquired sep-
arately, too.

The benefits that result from the measurements should exceed the costs of
the measurements and the associated data entry. For reducing these costs,
the data should preferably be entered directly into an electronic system and
the measurements should be automated to a large extent. For measurements
that are based on the source code of software systems, this is already the case.

Another artifact that is often already available electronically are change re-
quests. A measurement of change requests can provide useful information
about the software systems as well as the software processes and the re-
source usage.

Tools for the administration of change requests often provide some evalu-
ations of change requests, too. But these evaluations are rather limited.
Thus, an automatic evaluation of change requests is only possible to a lim-
ited extend so far.

7

8 1. Introduction

Task Description

The popular open-source tool Bugzilla is used at Kisters AG for the ad-
ministration of change requests. The tool has been complemented by several
extensions, among other things for an improved dependency tracking between
different development projects and for an extended state administration.

In the context of process improvement measures first requirements for metric
evaluations over the change requests that are administered in Bugzilla have
been formulated. These requirements should be completed and analyzed at
first. Thereby the characteristics of the different product developments and
the embedding into the complete development process have to be considered.

On this basis requirements for tool support for metric calculation and for
the generation of charts should be determined. A solution for tool support
should be designed and implemented. For the design of the tool it should
be considered that the tool should be extensible by additional metrics and
charts and that the effort for administration and maintenance of the devel-
oped solution should be low.

The diploma thesis is therefore structured into the following tasks:

1. Familiarization with the topic on the basis of the literature [SHT05,
Buh04, LW00, BUGb]

2. Elicitation and analysis of the requirement for an evaluation tool

3. Analysis of the existing evaluation possibilities provided by Bugzilla

4. Design and implementation of a tool for the evaluation of change re-
quests

5. Evaluation of the developed solution

6. In parallel to the tasks 1-5, the results should be documented in written
form

Cooperation partner for this diploma thesis is Kisters AG, Aachen. Kisters
AG is a growing, internationally expanding company that provides solutions
for the areas resource management systems, environment health safety, in-
formation technology and environmental consulting. The software solutions
are organized in a growing product portfolio of related products.

9

Structure of the Thesis

In chapter two, the basic terms that are used throughout this thesis are
defined. The next chapter provides an evaluation of the existing tools for
calculating metrics over change requests. These two chapters contain the
foundations for the requirements of the tool that has been developed. These
are presented in chapter four. The software process that was used for the
development of the tool is outlined in chapter five. Chapter six contains
information about the architecture and the design of the tool. In chapter
seven, the software process, the developed tool and the used metrics are
evaluated. The last chapter finally provides a summary of this thesis and a
perspective on future extensions.

10 1. Introduction

Chapter 2

Basic Terms

In this chapter, important basic terms from the areas of software engineer-
ing, software metrics and charts that are used in the following chapters are
explained and defined.

A software project is temporary activity that is characterized by hav-
ing a start date, the objective to develop a software system, constraints,
established responsibilities, a budget and schedule, and a completion date
[Tha97]. The objective and the constraints of a software project may be
unstable [LL06, p. 90]. After the software solution has been delivered, the
software project is finished.

A software product is a software system that is sold to one or multi-
ple customers and that is delivered in several releases. According to Sneed
[SHT05], the different releases are developed in multiple software projects,
with each new release based on the previous one.

The general process of changing a software system after delivery is called
software maintenance [Som04, p. 492]. The three different types of soft-
ware maintenance are adaptive maintenance, corrective maintenance and
perfective maintenance [Som04],[LL06]. They correspond to changing re-
quirements, fixing errors and improving the product qualities.

According to Sommerville, “configuration management (CM) is the de-
velopment and use of standards and procedures for managing an evolving
software system” [Som04, p. 690]. This means it is part of the maintenance
activities. It is concerned with managing different versions of the develop-
ment artifacts, building systems from these artifacts and dealing with changes
in the software.

11

12 2. Basic Terms

2.1 Change Request Management

Change request management (CRM) is a software maintenance activity
that is part of the configuration management. It is concerned with analyzing
the costs and benefits of proposed changes, approving those changes that are
worthwhile and tracking which components of the system have been changed
[Som04, p. 696].

A software problem report (SPR) is a report that is created when the
user has problems using a software system [LL06]. The problem is docu-
mented in this report, including the used software version, a problem de-
scription and the name of the user to whom the problem appeared.

A change request (CR) is a software problem report that requires the
software to be changed. These are usually error corrections (corrective main-
tenance), new requirements (adaptive maintenance) or restructuring the sys-
tem to improve maintenability (perfective maintenance). Software problem
reports that were made due to wrong system usage do not result in change
requests.

A change request has usually the properties of a software problem report
and some additional properties. The additional properties include a target
version of the software that should include the change and additional work-
flow states like “verified”.

Change requests are typically administered in electronic systems called change
request management tools [LL06]. One common system used for this
purpose is Bugzilla [BUGa]. Although there are some products available for
CRM, individual solutions are common in companies, too. Bugzilla and some
other tools are evaluated in Chapter 3.

2.2 Software Metrics

Fenton and Pfleeger define measurement in the following way: “Measure-
ment is the process by which numbers or symbols are assigned to attributes
of entities in the real world in such a way as to describe them according to
clearly defined rules” [FP96, p. 5].

Measurements can be objective or subjective. Objective measurements
are calculated by a precise, repeatable procedure, whereas subjective mea-
surements are based directly or indirectly on individual estimates.

2.2 Software Metrics 13

The same measurements over different entities should be comparable. There-
fore, measurements have associated scales that define the relationships bet-
ween the measurement results. There are five different scale types: nominal,
ordinal, interval, ratio and absolute scales [LL06, p. 19]. These scale types
differ in the extent to which they allow comparison of and calculation with
the measurement results. The choice of the scale type is directly connected
to the measurement itself, for example, one should not use an ordered scale
in a measurement of an attribute that has no meaningful order.

Software metrics are special measurements. According to Sommerville, “a
software metric is any type of measurement that relates to a software
system, process or related documentation” [Som04, p. 655]. The entities
of which attributes are measured in software metrics are therefore the soft-
ware product, the software development process and related artifacts and
resources. Change requests and software problem reports in particular are
software artifacts that can be measured by software metrics.

Metrics can also be derived, which means that they are calculated based
on the results of other metrics. Such metrics are called indirect metrics,
whereas all metrics that are simple measurements are called direct metrics.

An ideal metric should posses the following qualities: differentiated, compara-
ble, reproducible, available, relevant, cost-effective, plausible [LL06, p. 281].
It depends on the metric to which extent these qualities are available. Ob-
jective measurements are more likely to be differentiated, comparable and
reproducible, whereas subjective measurements are more likely to be rele-
vant and plausible [LL06, p. 288].

The goal of software metrics are characterizing, evaluating, predicting and
improving [PGF96, p. 3]. In the case of change requests, this is related to the
software development process, the software products and the used resources,
because the change requests provide some information about all of them.

Although the use of metrics can provide advantages, one should be aware
that it takes some effort to measure them and that they might not be as
significant as they are expected to be. If the performance of developers and
teams is evaluated based on metrics, the developers are tempted to manipu-
late the metric results by applying a style of work that improves their metric
results. Because such a behavior turns the metrics worthless, one should be
aware of performance evaluations based on metrics [DeM95].

14 2. Basic Terms

2.3 Goal-Question-Metric (GQM) Approach

A common approach for defining software metrics is the goal-question-
metric (GQM) approach [RU89]. It is based on the idea that measurements
should be used to achieve higher-level goals which depend on the context of
the organization that uses them. This is contrary to a random use of metrics
defined in the literature, which causes costs with questionable results. Rom-
bach describes GQM as follows: “The GQM paradigm provides a mechanism
for specifying measurement goals and refining them into a set of quantifiable
questions and metrics in a tractable way” [RU89, p. 582].

In the first step of GQM, measurement goals are defined. They should be
on a lower level than business goals [PGF96]. Measurement goals have an
object of interest, a purpose, a perspective, and an environment. The object
is the entity that should be described with measured values. The purpose is
the reason why the measurement activity should take place. The perspective
describes who is interested in the metric results. Finally, the environment
describes the context for interpreting the metric results.

In the second step, the goals are translated into quantifiable questions.
Answering these questions should provide valuable information about the
previously defined measurement goals. Finally, concrete “metrics are derived
to describe what data might be collected to answer the questions” [RU89,
p. 583]. A metric can be related to more than one question and answering
one question can depend on multiple metrics.

Rombach provided a measurement model for the GQM approach. It can
be outlined as follows [RU89]:

1. Specify measurement goals. These are the first steps of GQM described
above.

2. Plan measurement process. This includes stating hypothesis about the
current state and planning how the process will be executed.

3. Perform measurement process. Performing the measurement process
means collecting and validating the data.

4. Interpret collected data in the context of the specified measurement
goals. In this step, the data is analyzed and the hypothesis from the
planning step are validated.

2.4 Charts 15

The GQM approach was further improved by Park, Goethert and Florac
[PGF96], who created the GQ(I)M approach. The ’I’ in GQ(I)M stands
for indicator. Indicators in this context are representations for the data from
the metrics, for example information graphics or special table representations.
The advantage of this is the clear separation of the data itself and the way
it is represented to the user.

2.4 Charts

“Data graphics visually display measured quantities by means of the com-
bined use of points, lines, a coordinate system, numbers, symbols, words,
shading and color” [Tuf98].

A chart is a special kind of data graphic. It displays the result of a function
that is parametrized with one or more parameters. The maximum number
of parameters is determined by the type of chart, the most common case are
two parameters. The values that are used as input for each parameter are
fixed, and each combination of values is used as input if there are different
parameters. The co-domain of the function must be an interval, ratio or
absolute scale.

Because measurements can be regarded as functions, their results can be
used as input for charts if their scale is applicable for charting. The different
parameters could be entities and time points. Another possibility is a meta-
function were one parameter is the concrete measurement function and the
other parameters are the same as above. Thus, one or more measurements
can be displayed in a chart.

Common attributes of charts are a title and a legend. The legend explains
what parameter values are mapped to which parts of the chart.

In the following, the chart types that are relevant for this thesis are dis-
cussed.

A pie chart (see Figure 2.1) is a chart that displays the result of a function
with one parameter in a filled circle that is divided in different pieces. Each
parameter value is mapped to one piece. The size of that piece is determined
by the ratio of the result for that parameter value in the sum of all results.

16 2. Basic Terms

Figure 2.1: Pie chart Figure 2.2: Line chart Figure 2.3: Bar chart

Figure 2.4: Stacked area chart Figure 2.5: Stacked bar chart

Because a pie chart calculates ratios, it requires that the co-domain of the
function is a ratio scale.

The following charts have a domain axis, which is the horizontal axis, and
a range axis, which is the vertical axis. The range of values on the domain
axis are determined by the parameters of the function. The range of values
on the range axis is determined by the range of results of the function. The
axis are labeled with the corresponding values.

Line charts (see Figure 2.2) display the results of a function with two pa-
rameters. One parameter is used to determine the range of values on the
domain axis, and the other parameter determines the different lines. The
result of the function is displayed as one vertex of a line. The line and the
horizontal position of the vertex are determined by the parameters of the
function. The vertical position of the vertex is determined by the result of
the function.

Bar charts (see Figure 2.3) display the results of a function with two pa-
rameters. One parameter is used to determine the range of values on the
domain axis in terms of different cells, and the other parameter determines
the position of the bars in each cell. The result of the function is displayed
as the height of a bar.

2.4 Charts 17

Stacked charts are a modification of the previous charts. In stacked charts,
the values for the parameter that determines the different lines respectively
the position of the bars are ordered. The position on the vertical axis is
relative to the position of the previous parameter value in that order instead
of being absolute. For example, if the result for the first parameter value
is three and for the second parameter it is four with the parameter that
determines the position on the horizontal axis being fixed, the value range
on the vertical axis for the second parameter is the range from three to seven.

Stacked area charts (see Figure 2.4) are a stacked modification of line
charts. The area beneath the lines is filled and they are stacked above each
other.

Stacked bar charts (see Figure 2.5) are a stacked modification of bar charts.
Instead of using different bars in a cell, the bars are stacked on top of each
other.

The last four chart types can serve as time series charts. Time series
charts, also called run charts [Kan95, p. 129], are characterized by using an
ordered set of time points as the parameter that determines the values on
the horizontal axis.

18 2. Basic Terms

Chapter 3

Evaluation of Existing Tools

During requirements engineering, the analysis modules of the following ex-
isting CRM tools were evaluated and compared:

• Bugzilla

• JIRA

• Polarion

• Code Beamer

The goal of the evaluation was the creation of a list of features that should
be included in the product. Therefore, the relevant features found in the
tools above were listed and classified. The result is used as input for the
requirements specification (see Chapter 4).

Evaluated Features

For each CRM tool, the following sets of features were examined in detail:

• Change request search. The possibilities and limitations of searching a
set of change requests according to some criteria are discussed in this
subsection. This is important with respect to the design of filters for
the basic set of change requests in the product.

• Charts. The properties of the different charts available in the tool are
evaluated in this subsection. This is important with respect to the
charting facility of the product.

19

20 3. Evaluation of Existing Tools

• Reports. In this subsection, the relevant reports that are available or
can be configured and their limitations are discussed. This evaluation
is relevant for the identification of the metrics that should be supported
by the product.

In the summary, the features from these tools are summarized to give a
general overview.

3.1 Bugzilla

Bugzilla [BUGa] is an open source issue tracker developed by The Mozilla
Organization [MOZ]. Version 2.18.6 was evaluated. A modified Bugzilla in-
stallation is in use at Kisters AG. In this section, bug is used as synonym for
change request, according to the Bugzilla terminology.

The Bugzilla Reporting and Charting Kitchen is the reporting part of Bugzilla.
It contains several modules for different types of charts: The graphical re-
ports, new charts and old charts module. These modules are explained in
detail in the reports section.

Change Request Search

Bugzilla provides three different levels of search functionality. These are
search by keywords, advanced search and advanced search using boolean
charts.

The simplest kind of search is the search by keywords. The bug sta-
tus and the product can be selected and keywords can be specified. In the
chosen product, bugs with the specified status that contain the keywords in
their description or comments are searched and returned.

Additionally, there is an advanced search that combines the other two
levels of functionality.

A complex mask allows the selection of the product, component, version,
target, status, resolution, severity, priority, hardware and operating system
for the search. Furthermore, keywords that should be found can be specified
for the following bug properties: summary, comment, URL, whiteboard and
bugs keywords. The bug owner, reporter, QA contact, CC list members and
bug commenters can be searched by keywords, too. Other advanced search
mask features contain the search for bugs where a certain property changed

3.1 Bugzilla 21

to a certain value in a certain time period, the search for bugs with a certain
number of votes, and the restriction of the search range to a list of bugs
specified by their identifiers.

The selections in the advanced search mask can be combined with the third
level of search functionality, advanced searching using boolean charts.
The user can specify boolean queries on the different bug properties that
can be combined using and and or. This level of search allows the follow-
ing fields to be searched in addition to the fields from the advanced search
mask: bugs the searched bug should depend on, bugs that should depend on
the searched bug, attachments, flags, estimated and remaining hours, hours
worked, completeness percentage and some other minor properties.

For each of these boolean queries, an operation can be selected and a set
of values the property must match according to the chosen operation can be
specified. The following sets of operations are available:

• Equality operations. These are operations that check the equality of
the property values to the specified values.

• Containment operations. These are operations that check whether the
property values contain the specified values in some way. This includes
the containment of regular expressions.

• Comparison operations. These are operations that compare the speci-
fied values to the values of the property, assuming that it is an ordered
property like integers.

• Change operations. These are operations that check the timespan
where a property change occurred, or the values from or to which the
property changed.

With the third level of search functionality, a large amount of different
searches can be specified.

The search result sort order can be specified, too, as one of the following
values: bug number, importance, assignee and last changed.

Charts

There are different types of charts used in the different modules of the
Bugzilla Charting Kitchen:

22 3. Evaluation of Existing Tools

• Line charts. Line charts are used in the new charts, old charts and
graphical reports module. They can display time series data or data
based on categories. For example, the number of open bugs over time
can be displayed. An example for data based on categories is a distribu-
tion of bugs on different product components. The lines have different
colors and are explained in a legend.

• Stacked area charts. In the graphical reports and the new charts mod-
ule, it is possible to create stacked area charts instead of line charts.
The different areas have different colors and are explained in a legend.

• Bar charts. The graphical reports module allows the creation of bar
and stack bar charts. The different bars and bar parts have different
colors and are explained in a legend.

• Pie charts. In the graphical reports module, the creation of pie charts
is possible. The names for the pieces are displayed in the chart, there
is no legend.

All charts can be resized horizontally and vertically.

Reports

The Reporting and Charting Kitchen supports different types of reports.
The first group contains reports about the current state of the bugs in the
database:

• Tabular reports. The results of the evaluation of a complex search can
be grouped in three dimensions. The dimensions are displayed as rows
and columns of a table and as different tables.

Each dimension can have a different grouping parameter, which is a bug
property with a finite number of values. Possible grouping parameters
are product, component, version, hardware, operating system, status,
resolution, severity, priority, target milestone, assignee, reporter, QA
contact and votes.

In each cell of the resulting tables, the number of the bugs that are
contained in the base filter and match all three grouping parameter
values of that cell is shown. It is linked to a page that contains a
detailed list of bugs.

• Graphical reports. The graphical reports module shows the results of
the evaluation of a complex search in a chart. Depending on the type
of chart that is selected, there are different configuration possibilities:

3.1 Bugzilla 23

– Line and bar charts. Grouping parameters can be specified for
splitting the search results into different categories on the horizon-
tal axis, into different lines and bars, and into multiple charts. The
range on the vertical axis reflects the different group sizes. The
number of bugs that matches a category determines the height
of a bar or the position of a point in the line. The chart can be
stacked or not. If line charts should be stacked, a stacked area
chart is used.

– Pie charts. For pie charts, only the grouping parameters for split-
ting the search results into multiple charts and for dividing the
sections in a pie chart can be selected. The size of the different
pieces is determined by the relative amount of bugs that fall into
the category of the piece.

The resulting charts can be resized and a table or csv view is available.

The other group contains reports about change over time:

• Old charts. The old charts module shows the number of bugs in the
specified state like new over time using a line chart. As the base set
of bugs, one or all products can be chosen. The time period on the
horizontal axis is determined automatically. The functionality of the
old charts is contained in the new charts, too.

• New charts. The new charts module is much more flexible and allows
various types of charts to be created. The basic principle of the charting
in the new charts module is the following:

– Different searches, called data sets, are specified using the ad-
vanced search mask. These data sets can be stored and reused in
different charts.

– Multiple of these data sets can be added to a chart. For each
data set, the number of bugs that match the filter over time is
calculated.

– Data sets can be displayed in the chart as lines or can be summed
up to combined data sets which can be displayed as lines, too.

– All data sets can be added to a total line. Alternatively, the data
sets can be displayed in a stacked area chart instead of a line chart.

– The time period that is evaluated can be chosen and the resulting
chart can be resized.

24 3. Evaluation of Existing Tools

The graphical reports module is very flexible for creating reports about cur-
rent state of the bugs in the database. Its limitations are the following:

• The grouping of the different values is not flexible regarding the group
content. The selected bugs are split into groups according to some bug
property, but only with one group per bug property value. Different
bug property values can not be unified in one group while splitting on
that bug property.

• There is no support for a weighted calculation of the size of an individ-
ual bug. All bugs are counted with a one when determining the size of
a group.

• Reports about derived values like the minimum, maximum, average
and median are not supported, the only value available for a group is
its size.

The new charts module, that is used for time series charts, is very flexible,
too. Although it may seem as if it would support all relevant time series
based charts by using data sets, there are several limitations, too:

• The main limitation is the fact that only the number of bugs can be
calculated. This means that the following calculation types are not
possible:

– Derived calculations where the results of the data sets are used
in further operations like dividing, multiplication and determining
average, minimum and maximum values. Such operations are use-
ful for advanced metrics. The only possible operation to combine
data sets is summing.

– Calculations that count the number of certain events for bugs.
Such events are for example bug state changes.

– Calculations that measure the length of time periods between cer-
tain events.

• There is no support for a weighted calculation of the size of an individ-
ual bug. All bugs are counted with a one when determining the size of
a data set.

• The time granularity cannot be selected. This can result in less signif-
icant results if the daily values vary too much.

3.2 JIRA 25

3.2 JIRA

JIRA [JIR] is a commercial issue tracker developed by Atlassian Software
Systems [ATL]. Version 3.7 was evaluated. In this section, the JIRA term
issue is used as synonym for change request.

Change Request Search

The filters in JIRA can be configured with several parameters. The results
for the selected values in each parameter are combined by a union operation,
and the results for the different parameters are combined by a cut operation.
The following parameters can be searched:

• Project. A list of possible projects is available for the selection of one
or multiple projects.

• Issue Type. Possible issue types are bug, improvement, new feature,
support request, task and sub-task.

• Target version. The target version is the version for which the issues
should be fixed. A list of all available target versions for the selected
projects is shown here.

• Component. Components the issues must be in can be specified. The
components from the selected projects are shown.

• Versions affected by the issues.

• A flexible text search in the summary, description, comments and en-
vironment fields of an issue. The query can contain boolean operators
and wildcards.

• Reporter. The reporter can be a single user, a group of users, or no
reporter.

• Assignee. The assignee can be a single user, a group of users, or the
special value unassigned.

• Status. One or more of the available issue states can be selected. The
issue states that are available depend on the workflow that is used.

• Resolutions. One or more of the available resolutions for an issue can
be selected.

26 3. Evaluation of Existing Tools

• Priorities. One or more of the available priorities for an issue can be
selected.

• Created in time period. A time period in which the issues have been
created can be specified. The time period can be open at one end.

• Updated in time period. A time period in which the issues have been
updated can be specified. The time period can be open at one end.

• Due in time period. A time period in which the issues will be due can
be specified. The time period can be open at one end.

• Resolution in time period. A time period in which the issues have been
resolved can be specified. The time period can be open at one end.

• Actual vs. Estimated Work Ratio. An interval in which the estimated
progress should be in can be specified. The interval can be open at one
end.

• List of issues. A list of identifiers for issues that should be returned
can be added.

• Participants. Participants of the selected issues can be specified.

The searches can be used to determine the base issue set for reports.

Charts

There are different types of charts in JIRA, line charts, bar charts and pie
charts. The type of the chart is fixed per report and depends on the selected
report.

The line charts are time series charts. They have the time values on the
x-axis. There are different lines with different colors for different types of
values. The area between the different lines can be colored, for example in
the created vs. resolved issues reports. Then, the area between the lines is
colored in the color of the upper line.

The bar charts are time series charts, too. Some of the bars are split to
display different values and their sum, for example in the recently created
issues report. Then, the different parts of the bars are colored differently.

For line and bar charts, the range of the vertical axis is calculated auto-
matically, depending on the available range of values. For different project

3.2 JIRA 27

versions, markers on the domain axis can be displayed to show the release
date and the version in the chart.

The main colors used in the line and bar charts are green and red, with
their common connotations. Green is used for data sets where high values
are desirable, whereas red is used for data sets where low values are desirable.

The pie charts only show a distribution of a grouping of the current state of
issues. The pie sizes are the relative sizes of the groups. The colors of the
parts are different. The description and the absolute size of a piece is shown
in a note for each piece.

For all the above charts, in addition to the chart itself, a data table with
the values is available.

Another type of chart used in JIRA is a progress bar, which is a stacked
horizontal bar chart with a single bar of fixed size and two parts. These
parts are colored green and red, with green marking the progress and red the
amount of work thats still left.

Reports

The reports in JIRA can be configured in some or all the following general
properties, depending on the report:

• Basic filter. A search that defines the basic set of issues that will be
used in the chart.

• Time period. The length of the time periods that are displayed in the
chart. Possible values are hourly, daily, weekly, monthly, quarterly and
yearly.

• Days previously. The number of days back from now that should be
included in the chart.

• Cumulative totals. Defines whether the individual values are added to
totals or not.

• Display versions. Defines which versions should be marked on the x-
axis of the chart. Possible values are all versions, only major versions
and no versions.

The following relevant reports are supported by JIRA:

28 3. Evaluation of Existing Tools

• Recently created issues. Counts the number of the created and resolved
and the created, but yet unresolved issues. The report can be config-
ured by basic filter, time period and day previously. The chart is a
stacked bar chart with a bar containing the number of resolved and
unresolved issues created in each time period.

• Created vs. resolved issues. Counts the created and resolved issues
according to the basic filter. The report can be configured by basic
filter, time period, day previously, cumulative totals and display ver-
sions. The chart is a line chart with one line for the created and one
line for the resolved issues. The area between the two lines is colored
green or red, depending on whether there are more resolved or more
created issues in the corresponding section.

• Resolution time. Calculates the number of issues resolved in the time
period and the total and average resolution time for these issues. The
report can be configured by basic filter, time period and day previously.
The chart is a bar chart with a bar for the average resolution time in
each time period.

• Average age. Calculates the number of unresolved issues and the total
and the average age time of these issues. The report can be configured
by basic filter, time period and day previously. The chart is a bar chart
with a bar for the average age in each time period.

• Pie chart. A pie chart report splits the issues selected by the base
filter according to some issue property and displays the result in a pie
chart and a table. Possible splitting parameters are all available issue
properties with finite values.

• User workload report. This report shows a table for the current work-
load of a user including the number of unresolved issues on a per
projects basis.

• Version workload report. The version workload report is based on a
certain version of a project. It shows a table with the issue types
as columns and users as rows. In the cells, the estimated remaining
workload for the user on issues with that issue type in the selected
project and version is shown. Furthermore, the estimated remaining
workload for each user and issue type is summed up. For each user, a
detailed list of the remaining open issues and their remaining estimated
effort is shown, too.

3.3 Polarion 29

• Time tracking report. The time tracking report shows a table that
compares the estimated time per issue with the spent time per issue.
It contains an accuracy measurement and a progress bar. All values
are summed to calculate the estimated and spent time for all issues in
the basic filter.

• Single level group by report. This report splits the issues in the base
filter according to the selected grouping criterion and shows the groups
and their issues in a table. For each group the progress is displayed in
a progress bar that renders the percentage of resolved issues.

JIRA has the advantage of supporting age based and time tracking reports,
in contrast to Bugzilla. On the other hand, the reports in JIRA are not as
configureable as in the Bugzilla new charts module with the data sets. The
number of available reports is rather fixed.

3.3 Polarion

Polarion for Subversion [POLa] is a commercial application lifecycle manage-
ment tool developed by the Polarion Software GmbH [POLb]. It integrates
requirements, change and project management tools and provides real-time
visibility of the development status. Version 2.6.0 of Polarion was evaluated.
In this section, the Polarion term “work item” is used as a synonym for
“change request”.

Change Request Search

Polarion uses query strings for searching work items. The language for the
query strings is the same as that in Apache Lucene [APA], because Polarion
uses that search engine.

Every field of a work item can be searched. The searches for the differ-
ent fields can be combined using AND, OR and NOT. The following types of
searches inside a field are supported:

• Simple text or value search. One or multiple values that should be
searched for in a field can be specified. Values that must be found can
be prefixed with the + operator and values that must not be found can
be prefixed with the - operator. If a text that contains multiple words
in a fixed order is searched, it can be written in quotation marks.

30 3. Evaluation of Existing Tools

• Wildcard search. * and ? can be used as wildcards with the common
meaning in strings that are searched.

• Fuzzy search. Fuzzy searches based on the Levenshtein Distance [LEV]
are supported. When searching for strings, work items that contain
similar strings in that field are found, too.

• Proximity search. For two words, resulting work items can be searched
where distance between these two words in the text is less than the
specified value.

• Range search. Dates and other values that are inside a specified range
can be searched. The range queries can be inclusive or exclusive.

• Grouping. Terms can be grouped by using parenthesis.

The query syntax provides a powerful and flexible solution for specifying
searches. A query builder is integrated in Polarion that simplifies the con-
struction of common queries.

Charts

The charting possibilities in Polarion are, compared to other tools, rather
limited. Two different types of charts are used:

• Line charts. Line charts are used to show time series data in Polarion.
The domain axis contains the time period represented in the chart, and
the range axis the range of available values. The different lines have
different colors.

• Single stacked bar charts. A single bar of fixed length is split into
several parts according to the relative size of the work item group that
is represented by the part. This type of chart is compareable to a pie
chart, but it is represented as a single bar. The parts have different
colors, each green or red, using different shades of green for the parts
on the left side and different shades of red for the parts on the right
side. If there are only two parts, this type of chart is equivalent to a
progress bar.

Reports

The following relevant reports that are supported by Polarion:

3.3 Polarion 31

• Work items trend. This line chart shows a time series for the new and
open work items and the unresolved requirements. The last 30 days
are shown on the domain axis, and the number of items is shown on
the range axis.

• Unresolved work items by priority. The unresolved work items in a
project are grouped by their priority. The size of each group is calcu-
lated and rendered in a single stacked bar chart.

• Unresolved work items by severity. The unresolved work items in a
project are grouped by their severity. The size of each group is calcu-
lated and rendered in a single stacked bar chart.

• Resolved work items by severity. The resolved work items in a project
are grouped by their severity. The size of each group is calculated and
rendered in a single stacked bar chart.

• Resolved vs. unresolved work items. The number of the resolved and
the number of the unresolved work items displayed in a single stacked
bar chart.

• Assigned vs. unassigned work items. The number of the assigned and
the number of the unassigned work items displayed in a single stacked
bar chart.

• Scheduled vs. unscheduled work items. The number of the scheduled
and the number of the unscheduled work items that are unresolved
displayed in a single stacked bar chart. Scheduled means in this context
that there is a time point when the work on that work item should start.

• Estimated vs. not estimated work items. The number of work items
with an initial estimate and at least one work time entry compared to
the number of all work items is displayed in a single stacked bar chart.

• In time vs. underestimated work items. In the set of estimated work
items, the rate of the work items where the initial estimation is greater
than the worked time and the remaining estimate is displayed in a
single stacked bar chart.

• Project plan accuracy. The project plan accuracy is the overall accu-
racy of a project. The initial estimates, spent times and remaining
estimates for all work items in the project with an initial estimate
and at least one spent time or a remaining estimate are summed up.
Depending on whether the project initial estimate is greater than the

32 3. Evaluation of Existing Tools

remaining estimate plus the spent times, it divides the remaining es-
timate plus the spent times or is divided by them. The result is the
overall project plan accuracy that is displayed in a single stacked bar
chart.

• Estimate accuracy. Estimate accuracy is the accuracy of the individ-
ual work item estimates. Only work items in the project that have an
initial estimate and at least one spent worktime entry or a remaining
estimate are taken into account. It is calculated as the sum of the ini-
tial estimates divided by estimatedAccuracy = |remainingEstimate+
spentT ime− initialEstimate| and displayed in a stacked bar chart.

• Not suspected vs. suspected work items. This is the rate of unresolved
issues that are linked to other work items. The rate is displayed in a
stack bar chart.

• Traceability of commits to work items. The rate of commits that are
linked to work items is displayed in a single stacked bar chart.

• Traceability work items to commits. The rate of work items which can
be traced to a certain repository version. It is displayed in a single
stacked bar chart.

Most of the Polarion reports are current state reports represented in stacked
bar charts. The support for time series reports is limited. Advantages of
Polarion are the traceability, estimation and accuracy reports. On the other
hand, the reports in Polarion are not as configureable as in the Bugzilla new
charts module with the data sets. The number of available reports is rather
fixed.

3.4 Code Beamer

Code Beamer [COD] is a commercial collaborative development platform
with application life cycle management features developed by Intland GmbH
[INT]. Code Beamer 4.2.1 was evaluated. In this section, the Code Beamer
term “tracker item” is used as a synonym for “change request”. A tracker is
a collection of tracker items.

Change Request Search

Code Beamer supports search and filtering at different points of the software.

3.4 Code Beamer 33

The main search uses the Apache Lucene [APA] search engine. It supports
the following options for searching tracker items:

• Keywords. An advanced keyword search for searching tracker items is
provided. The searches for the different fields can be combined using
AND, OR and NOT. For one field, it supports the following search features:

– Simple keyword search. A term consisting of a keyword is searched
in the tracker items.

– Required operator +. Any term prefixed by the requirement oper-
ator must occur in the resulting tracker items.

– Grouping. Terms can be grouped by using parenthesis.

– Wildcards searches. The wildcards “?” and “*” can be included
in the keywords in the usual way.

– Fuzzy searches. Fuzzy searches based on the Levenshtein Distance
[LEV] are supported for finding tracker items containing words
which are similar to the specified keywords.

• Restriction on projects. The search can be restricted to a set of projects.

• Owner/Submitter. The search can be restricted to the tracker items
that are owned or submitted by the specified person.

• Created/Submitted. The time period the search tracker items were
created in can be specified.

• Modified. The time period the search tracker items were modified in
can be specified.

Code Beamer supports variable trackers for the project. Each tracker can
have its own fields, which makes searching more complicated. To solve the
problem of filtering trackers, Code Beamer supports customer tracker views.
They are configured with a name, filtering, displayed fields and sorting. The
filtering relevant here can be configured as follows:

• For fields with a fixed, finite set of values, a subset of these values can
be selected for filtering. It can be combined with a not that selects the
inverse set. This is applicable for fields like priority or status.

• Fields of a number, text or data type can be searched by comparison
operations. The field, the operation, and the searched values are se-
lected and form a search criterion. The following types of operations
are available:

34 3. Evaluation of Existing Tools

– Equality operations. Equality operations compare if the value in
the field of the tracker items equals the specified values. The
non-equality operation is available, too.

– Containment operations. Containment operations check whether
the specified keywords are contained in the tracker item field or
not. The starts-with operation is also available.

– Comparison operations. Comparison operations compare if the
specified value is greater or less than the tracker item field value.

– Field value availability check operations. These operations check
whether the field of the tracker item is set or not.

The different search criteria can be combined with AND and OR and they
can be grouped.

Code Beamer uses a third variant of tracker item filtering in the specification
of tabular reports. Here, in addition to selecting a set of allowed values for
fixed, finite field types, an additional SQL WHERE statement can be specified
to further narrow the search.

Charts

Code Beamer uses two types of charts:

• Bar charts and stacked bar charts. Bar charts and stacked bar charts
are used to display information that is split into categories and some
simpler time series data.

• Line charts. Line charts are used to display time series data in Code
Beamer.

Reports

Code Beamer supports the following relevant reports:

• Last 7 days changes. A stacked bar chart shows the number of submit-
ted, edited and closed tracker items for the last 7 days.

• Last 7 days trend. A line chart shows the number of open tasks and
the estimated and spent hours over the last 7 days.

• Bugs by date. The number of total, open and closed bugs for the last
two months is displayed in a line chart.

3.4 Code Beamer 35

• Bugs by category. The current open and closed bugs are split into their
categories, which is used in Code Beamer as a synonym for component.
The result is displayed in a stacked bar chart with one bar for each
category.

• Bugs by severity. The current open and closed bugs are split into their
severities. The result is displayed in a stacked bar chart with one bar
for each severity.

• Bug age by severity. The age of the open bugs in weeks is determined.
The open bugs are split according to their age in weeks and then these
groups are split again by their severities. The result is displayed in
a stacked bar chart with one bar for each week of age and with the
severities as bar parts.

• Bugs per KSLOC. The number of total bugs detected per thousand
source lines of code is displayed in a time series line chart. The evalu-
ated time period is the last two months.

• Tasks by date. The total and open task time series for the last two
months is shown in a line chart. The line chart contains a time series
for the submitted and edited tasks, too, but these are not summed up,
but shown as their daily values.

• Requirements with cumulative changes. This time series line chart
shows the number of total and open requirements over the last two
months. Additionally, it shows the cumulative changes to requirements
in that time period.

• Requirement changes by date. This time series line chart shows the
number of total and open requirements over the last two months. Ad-
ditionally, it shows the number of new and changed requirements on a
daily basis over that timespan.

• Estimated and spent task efforts in hours. This time series chart shows
the number of estimated and spent task efforts in hours for both the
open and the closed tasks. It is shown in a line chart that ranges over
the time period of the last two months.

• For the different work item types like bug or feature request, a report
by status and severity is available. The work items of the selected type
in the project are split into groups by their status and severity and the
result is displayed in a bar chart and a table. The severity is used for

36 3. Evaluation of Existing Tools

the creation of bar groups, whereas the status is used for the colors of
the bars in the bar groups. The height of the bars reflects the number
of work items with that severity and status.

Code Beamer supports a fixed set of reports, much like Polarion. It lacks
the flexible configuration of time series reports available in Bugzilla. An
advantage of Code Beamer is the integration of requirements, which supports
reports like “requirement changes by date”.

3.5 Summary

In this summary section, the main features of all evaluated tools are high-
lighted.

Change Request Search

The search functionality provided by the different tools ranges from a simple
keyword search in a fixed set of properties to the specification of the WHERE

part of an SQL statement.

Whereas a simple keyword search is not sufficient for selecting the base set
of change requests, SQL statement parts are on a level of abstraction that
is too low for the use in the final product. Therefore, the intermediate level
features are summarized here:

• Text fields can be searched by simple keywords, wildcards, fuzzy and
proximity search. Further options for text fields are a starts-with search
and an equality search.

• Text fields can be searched by regular expressions.

• Fields of an ordered type like text fields, date fields and number fields
can be searched by a range search.

• Fields of an ordered type can be searched by comparison with other
values.

• Fields with a finite, fixed set of values can be searched by a set of these
values.

• The basic search terms can be grouped and combined with the boolean
operators AND, OR and NOT.

3.5 Summary 37

• Change requests can be searched by their creation and modification
dates, especially by searching change requests with modification or cre-
ation dates that are in certain time periods.

• Change request can be searched by their field changes. The original or
new value that is searched can be specified for such a filter.

Charts

The charts supported by the tools can be grouped into charts that support
the display of time series and those that do not. The charts that cannot be
used for time series data, but only for a snapshot like the current state, are
the following:

• Pie charts. Pie charts show a distribution of groups of change requests.
Normally, a basic set of change requests is split into these groups ac-
cording to some criterion, for example the available values in a field.

• Horizontal single stacked bar charts. These charts are similar to pie
charts because they show a distribution of groups of change requests.
But instead of showing that distribution in a pie, it is shown in a
horizontal bar. Progress bars are a special form of these charts, because
they contain only two pieces.

The other types of charts can be used to display time series data and snapshot
data:

• Line charts. Line charts show several data sets in different lines. The
domain axis can contain a time period or categories. If the data sets
have different ranges, there can be multiple range axes.

• Stacked area charts. Stacked area charts are the stacked form of line
charts. Instead of drawing each line independent of each other, they
are stacked on each other and the area between them is filled.

• Bar charts. Bar charts have several data sets for different bars. The
domain axis can contain a time period or categories. For each entry in
the domain axis, one bar from each data set is displayed. If the data
sets have different ranges, there can be multiple range axes.

• Stacked bar charts. Stacked bar charts can contain several pieces per
bar. The pieces are stacked on top of each other. Usually, there is only
one bar for each entry on the domain axis, but it is also possible that
another splitting dimension is added and that there are several stacked
bars for each entry on the domain axis.

38 3. Evaluation of Existing Tools

Another important feature is the use of markers on the domain axis to show
the date of versions in a time series.

Reports

The first distinction for the reports is the distinction between snapshot and
time series reports. Snapshot reports calculate values for a specific point of
time, most often the current date. Time series reports calculate values at
different time points in a time period. The different time points in the time
period are usually calculated by splitting it into time intervals of a fixed du-
ration and using the end points of the intervals as time points.

The relationship between time series reports and snapshot reports is the
fact that a time series report can be split in multiple snapshot reports with
the same calculation, and vice versa. The relationship can be cumulative,
meaning that the snapshots are added, or not. Because of this relationship,
it is only necessary to evaluate snapshot reports, as they can be extended
into time series reports.

The following types of snapshot reports appear in the evaluated tools:

• Splitting. According to some criteria, the change requests are split
into groups. The size of the groups is calculated and displayed in the
snapshot report. Splitting includes counting the number of all change
request as a special case, namely splitting into one group.

Examples for these kinds of reports are the number of created change
requests, the number of closed change requests, the state distribution
of open change requests, the priority distribution of all change request
and so on.

The splitting can be multi-dimensional, for example a splitting into
priority and status.

• Age based reports. Age based reports like the resolution time of closed
change requests or the average age of open change requests require the
calculation of the length of a time period.

• Workload reports. The workload reports are based on the amount of
time spent on change request and the original and remaining estima-
tions on how much time must be spent to resolve a change request.

• Linked reports. Reports that link the change request to external arti-
facts like requirements or the version control system.

3.5 Summary 39

• Derived reports. Reports that calculate derived values based on other
numbers, like the original effort estimation accuracy.

Reports usually have a basic filter that determines the set of cases that are
evaluated. The base filter can be just the selected project, but it can be an
advanced filter, too.

Another important parameter is the time granularity. It determines the
length of the time period for the snapshot evaluation, for example, that all
created change requests on one day should be counted.

For time series reports, there is a time period that should be evaluated,
whereas for snapshot reports, there is a time point.

40 3. Evaluation of Existing Tools

Chapter 4

Requirements

Based on the results from the evaluation of the existing tools (see Chapter 3),
the concepts and terms of the software process metric domain were analyzed
and a requirements specification was created. This chapter contains the
important parts of the requirements specification.

4.1 Introduction

4.1.1 Goal and intention of the product

The tool should evaluate metrics on the data contained in the change request
management (CRM) system used by Kisters AG. The resulting information
can be used for several purposes:

• Evaluation how the CRM system is used by the employees. This means
measuring the quality of the data collected in the CRM system.

• Improvement of the awareness of the current project states. This means
measuring the workload and the software product quality.

• Finding software development process weaknesses. This means mea-
suring the software development process quality and speed.

• Measuring whether development process changes improved the process
or not. The measurements required for this point are measuring the
workload, the product quality and the software development process
speed and quality.

41

42 4. Requirements

4.1.2 Users of the product

The product will be used by different employees at Kisters AG, including
project managers, department managers and quality assurance staff.

The different users will be using the product for getting different kinds of
information. These kinds of information range from detailed information
like the bugs that are overdue in a specific component to general informa-
tion like the development of the average estimated remaining workload per
employee.

4.1.3 Assumptions and dependencies

The CRM system in use at Kisters is a modified Bugzilla 2.18.5 installation
running on a MySQL 4 database. The modifications to Bugzilla include

• the introduction of different case types. At Kisters AG, Bugzilla bugs
are called cases, and software defects are called bugs. The case types
are encoded in the severity field of the case.

• the introduction of additional case fields like deadline and customer.
These fields are stored in a rate table.

• changes in the case workflow. New case states like “waiting for customer
information” were introduced.

4.2 Concept Maps

4.2.1 Change Request Management

In change request management (CRM, see Figure 4.1), change request man-
agement tools are often used to administer change requests. CRM tools are
software programs that store change requests in a database and help access-
ing that data. They are a subclass of issue tracking systems which manage
issues. Issues are a generalization of change requests that include support
calls and other tasks as well.

Bugzilla is a special bugtracker. Bugtrackers are a special class of issue
trackers. It manages bugs, which are used as a synonym for cases and issues.

There are three types of cases at Kisters AG: support calls, bugs and en-
hancement requests. Only enhancement requests and bugs are real change

4.2 Concept Maps 43

Figure 4.1: Concept map “change request management”

requests. Enhancement requests are requests to add new features to a soft-
ware, whereas bugs are requests to fix defects in a software. Support calls fall
into the class of software problem reports, because they do not necessarily
lead to a change of the software.

4.2.2 Case

A case (see Figure 4.2) is a synonym for an issue. It has a case type, which
can be a bug, an enhancement request or a support call. Other properties
are:

• Deadline. The date on which a case has to be verified and shipped.

• Severity. The severity is an integer between 1 (highest) and 4 (lowest)
that indicates how important the work on a case is to its customer.

• Priority. The priority is an integer between 1 (highest) and 4 (lowest)
that indicates how important the work on a case is to Kisters AG.

• Actual effort. The number of hours spent working on the case.

• Estimated effort. An estimation of how much work in hours will be
required to resolve the case.

44 4. Requirements

Figure 4.2: Concept map “case”

4.2 Concept Maps 45

• Case creation timestamp. The time and date at which the case was
created.

• Resolution. The way a case was resolved, for example fixed or duplicate.

• Blocking cases. Cases that need to be resolved before work on this case
can proceed.

• Dependent cases. Cases that need this case to be resolved before work
on them can proceed.

• Case state. The state of work the case is currently in. It is described
in detail in the next section.

• Assignee. The Bugzilla user that is assigned to work on the case. It
can be a real person or a pseudouser which stands for a certain class of
employees like teams.

• Product. The software product the case belongs to. A product consists
of different components.

• Component. The software component the case belongs to. A compo-
nent belongs to a certain product.

• Target milestone. The milestone of the product that should contain
the bugfix for a bug case.

• Company. The company the work on the case is done for. It can be a
customer, but it can be Kisters AG itself or a customer group, too.

• Reporter. The person who entered the case into the Bugzilla database.

• Version. The version of the software the case was reported against.

4.2.3 Case State

A case state (see Figure 4.3) is the state of work the case is currently in.
There are nine different states:

• New. The state of a case that has just been created, but is not yet
assigned.

• Reopened. The state of a case when the QA department or the cus-
tomer has discovered that the case was not resolved as expected and
further work needs to be done before it can be resolved again, but it is
not yet assigned.

46 4. Requirements

Figure 4.3: Concept map “case state”

4.2 Concept Maps 47

• Assigned. The state when an assignee has accepted a case, but is
currently not working on it.

• Processing. The state of a case when its assignee is currently working
on the case.

• Waiting for customer information. The state of a case when the assignee
needs and has asked for further information from the customer, but the
customer has not yet delivered that information.

• Resolved. The state of a case when the assignee has finished working
on the case and the QA department has to verify that the work was
finished correctly.

• Verified. The state of a case when QA department has verified that the
assignee has resolved it correctly.

• Shipped. The state of a case when the software that includes the result
of the work on that case has been delivered to the customer.

• Closed. The state of a case when it has been shipped to the customer
and the customer has reported that everything works as expected.

A state transition is the change from one state to another. Not all possi-
ble transitions between states are allowed, for example, once a case has been
resolved, it cannot be directly changed to assigned, it has to be reopened first.

Case states can be grouped into state sets. Examples for state sets are:

• Unresolved. Set of states when a case has yet to be resolved. Includes
new, reopened, assigned, processing and waiting for customer informa-
tion.

• Processing+. Set of states once work on a case has begun. Includes pro-
cessing, waiting for customer information, resolved, verified, shipped
and closed.

• Resolved+. Set of states for resolved cases. Includes resolved, verified,
shipped and closed.

• Verified+. Set of states for cases that have been verified. Includes
verified, shipped and closed.

State sets can be used to filter cases.

48 4. Requirements

Figure 4.4: Concept map “event”

4.3 Functional Requirements 49

4.2.4 Event

An event (see Figure 4.4) is something that occurs to a case at a given point
of time. Examples for events are

• the creation of a case

• a case hits its deadline

• the end of a time interval

• a case state transition

Events are used in the case value calculation (see Section 4.3.1). Different
case value calculations like the calculation of a value on an event or the length
between two certain events are triggered by events. They assign a value to
the event that is used later in the group value calculation.

Each point of time lies within a time period. The start and the end of a
time period are itself points of time. The evaluation time period, which is
itself a time period, can be split into several time periods by using a time
granularity.

4.3 Functional Requirements

Because of the relationship between snapshot reports and time series reports
(see Section 3.5), and the fact that the Bugzilla Reporting and Charting
Kitchen already supports snapshot reports, the tool should only evaluate
time series reports.

4.3.1 Basic Algorithm Parameters

The basic algorithm (see Figure 4.5) can be parametrized in several ways:

• Basic filter. The basic filter determines which cases will be evaluated.
It should be configureable to allow restriction to products, assignees,
components etc.

• Group parameter. The group parameter determines how the evalu-
ated cases will be grouped into case groups before the group itself is
evaluated. Examples are product, component or priority. It should be
possible to do a nested grouping, for example group by products on the
first level and by their components on the second level.

50 4. Requirements

Figure 4.5: Basic algorithm structure

4.3 Functional Requirements 51

• Case value calculation. This parameter determines how the values
for a case on a certain event are calculated. The algorithm can be
parametrized with more than one case value calculation. Possible types
of case value calculations are counting with a weight, calculating time
interval lengths and counting event occurrences. Weights are calcula-
tions based on the state of cases on a certain event.

• Group value calculation. This parameter determines how the result
value for a group is calculated from the results of the case value calcu-
lations for the cases in that group. The algorithm can be parametrized
with more than one group value calculation.

• Evaluation time period. The time period that should be evaluated.

• Time granularity. This parameter determines how the evaluation time
period is split into the time periods for which the group values are cal-
culated. Examples for time granularities are week, month and quarter.

4.3.2 Metrics

In addition to the parameters of the algorithm, several metrics were specified
that the product must support. They are described in the following.

• Percentage of resolved cases without actual effort values. Calculates
the percentage of cases without actual effort values in the set of all
relevant resolved cases.

• Percentage of cases without version value. Calculates the percentage
of cases without version value in the set of all relevant cases.

• Percentage of resolved bugs without a target milestone. Calculates the
percentage of bugs without a target milestone in the set of all relevant
resolved bugs in a time period.

• Original effort estimation accuracy. The original effort estimation ac-
curacy is a measurement how precise the initial effort estimation for a
case is compared to the actual effort required to close it. For each case,
it is calculated as

1−min(1,
|originalEstimatedEffort− actualEffort|

originalEstimatedEffort
)

• Totals. The totals metric calculates the number of open cases.

52 4. Requirements

• Incoming rate. The incoming rate is the number of cases added during
a time period.

• Outgoing rate. The outgoing rate is the number of cases resolved during
a time period.

• Average age before first entering state set. The state set must be further
specified, for example as “processing+” (see Section 4.2.3).

• Backlog Management Index (BMI). The backlog management index is
calculated as follows [Kan95, p. 105]:

BMI =
outgoingRate

incomingRate

• Totals overdue. The totals overdue metric calculates the number of
open cases that are beyond their deadline. Cases without a deadline
are not taken into account.

• Reopened rate. The reopened rate metric calculates the number of
cases reopened during a certain time period.

• Case lifetime. The age of open cases at that timepoint and the age of
closed cases at their closing.

• Estimated remaining workload. The estimated remaining workload is
calculated as the sum∑

case c

(estimatedEffortc − actualEffortc)

over all relevant cases c.

• Number of state changes before resolution. This metric counts how
often the state of a case was changed before it has been resolved.

• Number of assignee changes before processing. This metric counts how
often the assignee of a case was changed before processing that case
started.

• State residence time. The state residence time is a measurement how
long the cases stay in their different states.

• Customer activity. The customer activity is the amount of cases entered
by or for a certain customer.

4.3 Functional Requirements 53

• Defect rate. The defect rate is the percentage of bugs in the set of open
bugs and enhancement requests.

• User activity distribution. The user activity distribution counts how
many open bugs, enhancement requests and support calls there are for
a user.

• Bug assignment rate. The percentage of bugs compared to bugs and
enhancement request in the cases of a user.

• Product work distribution by components. This metric calculates the
totals for each component of a product.

• Correlation of Priority and Severity. This metric calculates how the
different severities specified by the customer correlate with the different
internal priorities.

4.3.3 Metric Categories

The metrics described above can be categorized by the goal that they are
used for. Using that criterion, a metric can fall into one or many of the
following metric categories:

Quality of collected data. Metrics that measure the quality of the data
collected in the Bugzilla database itself fall into this category. Quality in
this context means completeness, accuracy and precision of the data. The
results of metrics of this category should be considered when interpreting
other metrics, because these might be based on incorrect or incomplete data.

Workload. Metrics that measure how much work was done and how much
work is still left fall into this category.

Process speed. Metrics that measure how fast cases are processed fall
into this category. This includes the overall processing time and the process-
ing time for certain case states.

Process quality. Metrics that measure process qualities like project perfor-
mance, planning reliability and inner process qualities fall into this category.

Product quality. Metrics that measure the current state of the products
fall into this category.

54 4. Requirements

Metric Q
u
a
li
ty

o
f
co

ll
e
ct

e
d

d
a
ta

W
o
rk

lo
a
d

P
ro

ce
ss

S
p
e
e
d

P
ro

ce
ss

Q
u
a
li
ty

P
ro

d
u
ct

Q
u
a
li
ty

Percentage of Resolved Cases without Actual Effort Values
√

Percentage of Resolved Cases without Version Value
√

Percentage of Resolved Bugs without Target Milestone
√

Correlation of Priority and Severity
√

Original Effort Estimation Accuracy
√ √ √

Estimated Remaining Workload
√

User Activity Distribution
√

Totals
√ √

Incoming Rate
√ √

Outgoing Rate
√ √

Product Work Distribution By Components
√ √

Average Age Before First Processing
√ √ √

Backlog Index
√ √ √ √

Reopened Rate
√ √ √ √

Case Lifetime
√ √ √ √

Bug Assignment Rate
√ √ √ √

State Residence Time
√ √ √ √

Number of State Changes Before Resolution
√ √

Number of Assignee Changes Before Processing
√ √

Totals Overdue
√ √ √

Customer Activity
√

Defect Rate
√

Figure 4.6: Metric Categories

4.4 Non-Functional Requirements 55

Table 4.6 shows a classification of the metrics from the previous section ac-
cording to the metric groups described above.

4.3.4 Charts

The product should support the creation of charts for the metric results. The
charts should be line charts or stacked area charts, depending on whether
they are configured to be stacked or not.

They should be time series charts with the evaluated time period shown
on the domain axis. The height of the range axis should be determined au-
tomatically depending on the values in the metric result.

The data sets that are displayed in the charts should be selectable by speci-
fying which group calculations should appear.

The legend should be generated automatically, too. It should use the group
names and the group calculation names to determine the name for a data set.

Additionally, special configureable timepoints like release dates that are high-
lighted in the chart should be supported.

4.3.5 Web Frontend

The web frontend should provide an interface for evaluating metrics and
displaying them in charts. The usability of the web frontend is less important
than the functionality of the core module and the chart module.

4.4 Non-Functional Requirements

4.4.1 Performance Requirements

The system will be accessed through the web interface and should respond
within 5 minutes to a query.

The Bugzilla database at Kisters will get larger as more data is entered over
time. Therefore, the system should scale when used on a large database. As
it is expected that up to ten thousand cases are added per year, the system
should work efficiently on up to one hundred thousand cases.

56 4. Requirements

4.4.2 Maintenance Requirements

As the Bugzilla installation at Kisters will change, the product must be
changed, too. Therefore it should be easy to change the representation of
case fields in the database.

The product should be extensible regarding the evaluation of further metrics.

4.4.3 Security Requirements

The Bugzilla database contains sensitive data. The product must not change
this data under any circumstances. Additionally, it must be guaranteed
that the product cannot be misused from unauthorized persons to retrieve
sensitive information from the database.

4.4.4 Other Requirements

The product should be implemented using the programming language Java
and be based on the Java 2 Platform, Standard Edition (J2SE) 1.4.2 [JAV].

The web frontend should be implemented as web application that conforms
the Java Servlet Specification 2.3 [SER].

Chapter 5

Software Process

According to Sommerville, “a software process is a set of activities that leads
to the production of a software product” [Som04, p. 64] and “a software pro-
cess model is an abstract representation of a software process” [Som04, p. 65].

The choice of the software process model used in a project has a big impact
on the success of the project. Therefore, it is important that it is chosen
carefully.

This chapter is organized as follows:

• The project constraints are described.

• The consequences of the project constraints are examined.

• The used software process and how it is related to Extreme Program-
ming (XP) [Bec00] is described.

5.1 Project Constraints

The choice of the software process model was based on constraints that can
be grouped into project complexity, infrastructure integration and domain
knowledge constraints.

The project complexity constraints are the following:

• The project has one developer. The developer is familiar with agile
methods, especially XP.

• The project must be finished at a fixed deadline.

57

58 5. Software Process

• The product size is small. It is expected that the resulting source code
size will be less than ten thousand lines of code.

• The product is non-critical with respect to the definition given by Som-
merville [Som04, p. 44]: “If [critical systems] fail to deliver their services
as expected then serious problems and significant losses may result”.
It is neither safety-critical nor mission-critical nor business-critical.

The infrastructure integration constraints are the following:

• The product uses data supplied by the existing tool infrastructure. This
tool infrastructure might change.

• The product will be integrated in the existing tool infrastructure. Fu-
ture tools are expected to use the services provided by the tool.

The domain knowledge constraints are the following:

• Neither the developer nor the customer are familiar with the domain
of software process metrics that is explored during the project.

• There are no architecture patterns available for software process metric
evaluation systems.

5.2 Project Constraint Consequences

The project constraints have several consequences that influence the choice
of the software process model.

Because both the customer and the developer are unfamiliar with the do-
main, it is likely that new requirements are discovered after parts of the
system have been implemented. It is also likely that the priority of the re-
quirements changes and that old requirements are dropped.

Furthermore, because the requirements are likely to change and the devel-
oper is not familiar with the domain, the system architecture and design is
likely to change, too. Reasons for such changes may be new or changed re-
quirements, discovering of tool dependencies, and a better understanding of
the variation points and concepts of the domain.

5.3 Process Description 59

5.3 Process Description

As highlighted in the previous section, the requirements and the system ar-
chitecture are likely to change during the first iterations. This is the reason
why an agile software process model was chosen. As the developer already
has some experience with XP, this software process model was adopted to
the circumstances of the project.

The used software process model is divided into three main phases:

1. Initial requirements engineering. The goals of this phase are the
creation of an initial version of the requirements specification and a
basic understanding of the domain concepts and terms.

2. System implementation. The goal of this phase is the creation of
a software product that fullfills the requirements. It includes several
minor rollouts.

3. System documentation and rollout. The goals of this phase are
the documentation of the software, the final rollout and an increase of
the robustness of the software.

Each phase consists of one or many iterations, and in the implementation
phase, elements from agile software process models are incorporated. An it-
eration usually takes between one and one and a half months and is finished
by a meeting. This meeting serves as kick-off meeting for the next iteration,
too.

The software process model is based on the following principles of agile meth-
ods [Som04, p. 397]:

• Customer involvement. At the end of each iteration, the current project
state is evaluated and the goals for the next iteration are negotiated
with the customer.

• Incremental delivery. In each iteration of the system implementation
phase, a new part of the product is developed and evaluated by the
customer.

• People not process. The skills of the developer, especially the knowl-
edge of the Java programming language, the Eclipse IDE and the JUnit
test framework are exploited.

60 5. Software Process

• Embrace change. The variation points of the system are identified
and the system is designed to accommodate changes on these variation
points. The requirements and the system architecture are expected to
change during the development.

• Maintain simplicity. The system is refactored and restructured in order
to keep it as simple as possible. The development process is kept simple,
too.

5.3.1 Initial Requirements Engineering

In the requirements engineering phase, the result of each iteration was a ver-
sion of the requirements specification.

In the first iteration, existing CRM systems were examined with respect
to the process metrics and process metric visualizations they provide. The
result of this evaluation, which is also available in Chapter 3, was used as
base for the discussion with the prospective users.

Furthermore, the domain terms and concepts were identified by creating con-
cept maps. These concept maps were discussed with the prospective users.
They were used to create a glossary of the domain terms, which was discussed
with the prospective users, too.

After this basic exploration of the domain, the first version of the require-
ments specification was created. It contained a range of possible process
metrics, other functional requirements and the system constraints. This
document was discussed with the prospective users and checked for valid-
ity, consistency, completeness, realism and verifiability in the meeting at the
end of the first iteration.

In the next iteration, the requirements specification was revised according
to the results of the validation in the previous meeting. Additionally, the
process metric requirements were refined and split into reoccurring compo-
nents. Based on this restructuring, the first variation points of the evaluation
algorithm were discovered and a coarse model of the algorithm was designed.

This second version of the requirements specification was verified, revised
again and used as input for the implementation phase. The important parts
of the requirements specification are available in Chapter 4.

5.3 Process Description 61

5.3.2 System Implementation

In each iteration of the system implementation phase, a new part of the
system was developed. The goals of the iterations can be summarized as
follows:

1. Development of a first version of the core module and implementation
of some simple metrics to test the module.

2. Implementation of the remaining metrics and a first test of the system
on real data.

3. Optimization of the system on real data and creation of some prelimi-
nary charts using a spreadsheet software.

4. Implementation of the charting module and web frontend.

It is important to note that the goals were not planned in advance. At the
end of each iteration, the goal for the next iteration was set based on the
progress made in the current iteration and the problems that occurred.

In each iteration, these relevant elements from XP [Som04, p. 400] are used
among others:

• Incremental planning. The goals for each iteration are defined in its
kick-off meeting. The developer breaks down these goals into tasks he
executes. In the kick-off meeting of an iteration, the requirements can
be changed and re-prioritized by the customer.

• Test-first development on specification level. A test framework (see
Section 6.14) was designed that allows tests to be defined in XML
documents on specification level. These documents serve both as tests
and as reference on how to use the software.

• Refactoring and restructuring. The system is continuously refactored
to keep the design as simple, flexible and understandable as possible.

• Coding standards. The system development obeys the coding stan-
dards defined by the customer.

Several other XP practices are not used, because they are inappropriate for
such a project.

62 5. Software Process

Figure 5.1: Activities in the system implementation phase

One important practice that was not used is test-first development on unit
level. The internal structure of the software is expected to change mas-
sively as described in Section 5.2. Under such circumstances, the developer
has made the experience that unit tests slow down the development because
they have to be adapted, too. Therefore, unit tests are only written if criti-
cal, non-trivial units of the system that cannot be tested from specification
level need to be tested. This is only possible because it is expected that the
units of the software are not reused by other projects.

There are two basic activities (see Figure 5.1) in the system implementa-
tion phase:

• Feature implementation. Feature implementation begin with the cre-
ation of a test on specification level that passes if the software returns
the expected result for the test metric specification executed on the test
database configuration. Once the test creation is finished, the feature
is implemented. After the implementation, all tests are executed. If
they pass, the changes are committed to the version control system. If
they fail, the developer decides if he tries to fix the implementation or
reverts all changes since the last commit.

5.3 Process Description 63

• Refactoring. The developer refactores the code and runs the tests. If
they pass, he commits the changes into the version control system. If
they fail, he decides if he tries to fix the implementation or reverts all
changes since the last commit.

The process starts with choosing which task to do next and ends with it.
Fixing software defects is handled in the same way as implementing a new
feature: a test on specification level that fails because of the defect is written,
and then the new “feature” is implemented, which means that the defect is
fixed.

The tools used in the implementation phase are listed in Appendix A.

5.3.3 System Documentation and Rollout

In the system documentation and rollout phase, the system architecture was
expected to be quite stable. It contains well chosen variation points that
allow an easy accommodation of future changes.

The activities of this phase were:

• Documentation of the source code and architecture. The source code
and the system architecture were documented according to the stan-
dards required by the customer. The documentation was done in such
a late stage because it was expected that the software changes a lot in
earlier phases, so a lot of documentation from earlier phases would be
useless as it would be outdated. Because it was not needed for intra-
team communication, the documentation was done in the last phase.

• User documentation. A user documentation was created. It explains
how to use the software.

• Rollout. The software was installed on a server at Kisters AG.

• Minor changes and bugfixes. Minor changes requested by the users and
fixes to software defects were implemented in this phase.

• Increasing the robustness of the software. Understandable responses to
wrong user input were implemented.

64 5. Software Process

Chapter 6

System Architecture

The chapter deals with the architecture and the design of the tool. It is
divided in the following parts:

• General architecture. Description how the tool fits into the existing
tool environment and in which modules it is split.

• General core module design. Description of the core module algorithm
and the core module variation points.

• Detailed core module design. The different parts of the core module
are explained in detail.

• General description of the chart and web frontend modules.

Most of the following sections contain a short problem description, a design
description and an explanation of the design decisions. The design decision
subsections explain the use of software architecture design principles [LL06,
Chapter 17.3] like modularization, information hiding and separation of con-
cerns in the discussed part of the system.

Several design patterns [GHJV94] are used in the system design. Examples
are uses of the factory, facade, composite, adapter, null object and strategy
pattern. In most cases, the design patterns are not explicitly mentioned here,
but are visible in the class names.

65

66 6. System Architecture

Figure 6.1: Integration of the solution in the existing environment

6.1 General Architecture

Problem Description

The tool must be integrated in the existing tool environment at Kisters AG.
The tool should be split in different parts that can be reused by other tools.

Design Description

The tool was implemented in three different modules (see Figure 6.1):

• Core module. The core module has two XML interfaces, one for the
metric specification and one for the metric result. It calculates the
metric result for a metric specification.

• Chart module. The chart module is based on JFreeChart and has an
XML interface for the chart configuration. It returns a JFreeChart

object as result.

• Web frontend module. The web frontend module provides an HTML
form through which the metric and chart configuration can be supplied,
and calls the core and chart module to create the result that is displayed
to the user.

6.1 General Architecture 67

The tool is integrated in the existing environment at Kisters AG as follows:

• The users use an existing Bugzilla installation to manage their cases.

• Bugzilla stores the cases in the Bugzilla-DB.

• The core module uses this database to retrieve the values for the cases.
The database is accessed for reading purposes only.

• The users access the web frontend of the tool to get the results for their
metrics.

Design Reasons

Their are two main reasons for the design that was chosen.

The first one is the requirement that the users should be able to use the
tool, even if the user interface is very rudimentary. The second reason is
reuse of the metrics component by other services.

Therefore, the following design decision were made:

• Use of a web frontend as user interface. This has the following advan-
tages compared to a client application:

– Lower maintenance cost. The web application has to be installed
on a server only, each client can access it through a web browser.
In contrast to that, a client application has to be installed on each
client.

– Use by other services. The interface of the web application is
based on HTTP. Therefore, other services can call it and request
chart images and metric result XML for further processing.

• XML interfaces. By using XML interfaces, services written in other
languages, for example in Perl, can access the web frontend and use the
metrics component. Furthermore, a future migration to web services
is easier because they can be implemented as simple wrappers for the
existing modules.

• Modularization into web frontend, core and chart module. By using
this modularization, it will be easier to use the core and chart module
independent of each other and the web frontend after converting them
to web services.

• No modification of the existing environment. The existing, customized
Bugzilla installation at Kisters AG does not need to be modified.

68 6. System Architecture

6.2 Core Algorithm Sequence

The basic interface to the algorithm is the class CoreFacade. It contains the
method doCalculate that is parametrized by a string containing the met-
ric specification in XML and writes the metric result as XML to an output
stream.

The sequence of steps is the following (see Figure 6.2):

1. The CoreFacade parses the XML metric specification and configures
the object structure of the metric calculation. The MetricCalculation
object is the root of that structure. This step includes the configuration
of the case value calculators, the reading of the group parameters and
so on.

2. The core facade calls the calculate method on the configured Metric-
Calculation.

3. The MetricCalculation calculates which information is required by
its configuration.

4. The MetricCalculation creates the cases required for the evaluation
of the metric.

5. The MetricCalculation initializes the cases with the current values
for the required fields.

6. The MetricCalculation calculates all case values by processing the
event sources (see Section 6.5) and calling the configured case value
calculators (see Section 6.7) with the created events. The case values
are classified as they are stored in the case value container tree (see
Section 6.8).

7. The MetricCalculation calculates the group values for the case values
created in the previous step by calling the group value calculators with
the bottom layer of the case value container tree (see Section 6.9).

8. The MetricCalculation creates the XML result element for the group
values that are stored in the case value container tree.

9. The CoreFacade adds some status information like the metric config-
uration, a timestamp and the processing time to the resulting XML
document and writes it to an output stream.

6.2 Core Algorithm Sequence 69

Figure 6.2: General algorithm sequence

70 6. System Architecture

Design Reasons

There are different reasons for the different aspects of the sequence.

The separation between the mapping of the metric specification to an object
structure (readConfiguration method), the calculation itself (calculation
method) and the serialization of the DOM to an output stream (write
method) is a separation of concerns. The serialization and the metric spec-
ification mapping is not mixed with the algorithm itself, and they are inde-
pendent of each other. As a result, the metric specification format and the
output format can be changed without affecting the algorithm.

The algorithm itself is split into several steps. Each step does not know
how the other steps work, they only communicate through the resulting data
structures. Thus, the information how each step works and the internal data
structures used in each step are hidden from the other steps.

The first three steps are the result of the data source separation and the
optimization to calculate the required fields only (see Sections 6.11 and 6.13).

The case value calculation is separated from the group value calculation,
because the different group value calculators should be able to use the re-
sults from the different case value calculators, and the complete case value
calculation should be executed in one run over the case histories.

6.3 Core Algorithm Variation Points

Several points where the algorithm is likely to be extended were identified
during the requirements engineering and the iterative development of the
tool. These areas are examined in the following, grouped by their likelihood
to change.

The following areas are very likely to change:

• Weights (see Section 6.7). Weights are used in the calculation of case
values on certain events. New weights are likely to be added when new
calculations for case values are required.

• Fields (see Section 6.10). Because the Bugzilla installation at Kisters
is migrated to new versions and new features are added, it is very likely
that fields are added or they need to be implemented in a different way,
because their representation in the database changes.

6.3 Core Algorithm Variation Points 71

• Data sources (see Section 6.11). For the same reason as for the fields,
the data sources that provide the fields are likely to change.

The following areas are somewhat likely to change:

• Case state filters (see Section 6.4). New case state filters, for example
to support range checks on number or date fields, might be added.

• Events (see Section 6.5). New event types might be added when new
data sources are added.

• Event filters (see Section 6.6). New event filters that work on new event
types or filter events differently might be added.

• Group calculation operations (see Section 6.9). New operations like
more complex statistical or mathematical operations might be added
to support new metric calculations.

The following areas might change, although they are expected to be stable
after some changes:

• Case value calculators (see Section 6.7). New case value calculators
might be added to support calculations that cannot be executed with
the current calculators.

• Group evaluations (see Section 6.9). Group evaluations that create
XML elements with information that differs from the existing group
evaluations might be added. Currently, a details group evaluation and
a calculating group evaluation exist.

• Groupings (see Section 6.8). The way the results are grouped might
be changed. This includes changing the order and the available group
parameters.

• Time granularities. Additional time granularities like quarter, year or
hour might be added.

• Time period selection. Other mechanisms for time period selection, for
example relative time periods with respect to the current date, might
be added.

The tool is designed in a way that allows all these variation points to change
by adding new classes, removing old classes and modifying existing imple-
mentations. The core algorithm of the tool and the basic data structures
should not be affected by such changes, because the complete configuration
is done by the configuration part and the core algorithm only knows the
interfaces of the variation points, not the implementations.

72 6. System Architecture

Figure 6.3: Abstract design of the package dependencies

Package Dependencies of Variation Points

The implementation classes for the variation points are localized in two pack-
ages, the package that contains the classes that implement the variation point
and the package that contains the classes for the variation point configura-
tion. The dependencies are as follows (see Figure 6.3):

• The core package which contains a facade accesses the configuration
reader package to build the configured algorithm. Later, it accesses the
algorithm package for the execution of the configured algorithm.

• The configuration reader package accesses the algorithm package be-
cause it creates and configures the algorithm. It also accesses the con-
figuration packages for the algorithm variation points.

• The variation point configuration packages access the algorithm pack-
age because they configure some variation point of the algorithm. They
also access the the variation point implementation package. Thus, the
access to the variation point implementation package is restricted to
the corresponding variation point configuration package.

6.4 Case State Filtering 73

Figure 6.4: Design of the case state filtering

• The variation point implementation package accesses the algorithm
package, because it implements some interfaces of the variation point
that are defined in the algorithm package.

• Several packages use generic constructs supplied by utility packages.

This modularization and the structure of the dependencies have the advan-
tages that common changes only have a local impact and that a clear sepa-
ration of concerns is provided.

6.4 Case State Filtering

Problem Description

Cases must be filtered based on their current state when determining the
base case set that should be evaluated and when filtering certain events. A
flexible combination of the case state filters should be possible.

Design Description

A state filter (see Figure 6.4) is an information consumer (see Section 6.10). It
provides an accept method that calculates whether a CaseState is accepted
by the filter or not.

74 6. System Architecture

There are four different types of state filters:

• FieldValueStateFilter. This filter accepts all case states where the
field value of the field checked by this filter matches the expected value
of the filter.

• NullStateFilter. This filter implements the null object pattern and
accepts all case states.

• AndStateFilter. This filter is a composite filter that combines its
subfilters in a logical ‘and’ expression. To accept a case state, all its
subfilters must accept it.

• OrStateFilter. This filter is a composite filter that combines its sub-
filters in a logical ‘or’ expression. To accept a case state, one of its
subfilters must accept it.

Complex filters can be specified by the combination of and and or filters. For
example, to filter a set of field values, the corresponding field value filters can
be combined with an OrStateFilter filter.

The IDCollector has a collectIDs method that collects the identifiers of
all cases that match the state filter passed as parameter. It is accessed for
the calculation of the set of cases that will be evaluated by the algorithm.
The collector calls the prepareIDCollection method on the state filters for
the filter specific identifier collection.

Design Reasons

The clients, including the IDCollector, only use the StateFilter interface.
Therefore, the only point where the subclasses are accessed is the creation of
the filters.

This means that the state filter clients have no information about the state
filters that are available or their implementation. Their responsibility in the
interaction is just using the abstract state filter interface.

By separating the concerns in that way, the variation point that is likely
to change, namely the addition and change of state filter implementations,
is independent from the clients of state filters, and changes only have a local
impact.

6.5 Event Creation 75

Figure 6.5: Design of the event creation

6.5 Event Creation

Problem Description

There are different types of events that should be processed by event con-
sumers, e.g. case value calculators, in an inverted chronological order. The
basic processing infrastructure should be extensible because new event sources
and consumers might be added.

Design Description

An event source provides events in an inverted chronological order. There-
fore, its interface contains methods to access the date of the next event, to
check if there are any more events, and to process the next event. When

76 6. System Architecture

processing an event, an event listener is supplied that can be called if the
source creates event objects. Finally, there is a method that is called to close
a source after all events are processed or an error occurred.

The CompositeEventSource is an event source modeled after the composite
pattern [GHJV94]. It unifies a set of other event sources and lets them ap-
pear as one. It uses a comparator that compares date event sources by their
next date to provide the required inverted chronological order.

The following event sources are available:

• TimePeriodEventSource. This event source creates an event at the
end of a time period.

• CaseCreationSource. This event source creates an event when a case
is created and deletes that case from the list of available cases.

• ActualEffortEventSource. This event source creates an event when
the actual effort changes.

• BugsActivitySource. This event source changes the values of case
properties as certain fields change in the bugs_activity table and
triggers change events.

• BeyondDeadlineDataSource. This event source changes the value of
the boolean property “beyond deadline” to false once the current eval-
uation timepoint has moved back before the deadline of a case and
triggers change events.

The interface EventListener has a method eventHappened that is called
by concrete event sources when they create an event and want to notify the
listener. It is implemented by the MetricCalculation class that forwards
the events to the consumers.

The MetricCalculation class creates a composite event source from all
sources and calls the method process in a loop as long as there are events
left. It supplies itself as EventListener when calling the method process.

Design Reasons

In the original design, event creation and consumption was mixed in an al-
gorithm that represented multiple sources and consumers in one class. The
missing separation of concerns caused poor extendibility and maintainability.

6.6 Event Filters 77

In contrast to that, the advantages of the current design are:

• Good extendibility with respect to the event sources. New event sources
can be added easily without modifying the basic infrastructure and the
event consumers.

• Good extendibility with respect to the event consumers. New event
consumers can be added easily without modifying the basic infrastruc-
ture and the event sources.

• Improved separation of concerns. Each event source just deals with its
own events and changes, the sorting is done in the composite source and
the event consumption is hidden through the EventListener interface.

6.6 Event Filters

Problem Description

The case value calculators (see Section 6.7) need to react on certain events
and are therefore equipped with event filters. A flexible configuration of these
event filters should be possible.

Design Description

An event filter (see Figure 6.6) is an InformationConsumer that has a
method to filter events. The accept method returns a boolean that indi-
cates whether the event passed as parameter is accepted by the filter or not.

The following implementations of the EventFilter interface are available:

• BasicEventFilter. This filter checks if the event is an instance of the
eventClass of the filter. That way, it can be parametrized to filter any
type of event, for example EndOfTimePeriodEvents.

• CreateEventFilter. This filter is a subclass of BasicEventFilter

that accepts CreateEvents. It is an explicit subclass because it adds
the requirement of including the creation timestamp field.

• FieldChangeFilter. This filter is a subclass of BasicEventFilter

that accepts ChangeEvents and additional checks if the changed field
is the field of the filter.

78 6. System Architecture

Figure 6.6: Design of the event filters

• StatusChangeFilter. This filter is a subclass of FieldChangeFilter
that accepts ChangeEvents on the state field and additionally checks
whether the state transition represented by the change event is a state
transition from the filters’ list of source states into its list of target
states.

• StateCheckEventFilter. This filter checks the state of an event by
delegating this check to the state filter it is parametrized with.

• AndEventFilter. This filter combines several event filters and accepts
an event if it is accepted by all of the subfilters.

• OrEventFilter. This filter combines several event filters and accepts
an event if it is accepted by one of the subfilters.

Design Reasons

The design reasons for the event filter design are somewhat similar to the
reasons for the case state filter design. The clients only use the EventFilter
interface. Therefore, the only point where the subclasses are accessed is the
creation of the filters.

6.7 Case Value Calculation 79

This means that the event filter clients have no information about the event
filters that are available or their implementation. Their responsibility in the
interaction is just using the abstract event filter interface.

By separating the concerns in that way, the parts that are likely to change
in that variation point, namely the addition and modification of event filter
implementations, are independent from the clients of event filters.

Additionally, by delegating to state filters in a special event filter, the poten-
tials of the state filters are reused without any influences on the other event
filters except the StateCheckEventFilter.

6.7 Case Value Calculation

Problem Description

The case value calculation with different case value calculators should create
case value objects that are further evaluated by group evaluations. The
whole calculation for all case value calculators should be executed in one run
over the case history. The case value calculators should be configurable in
a flexible manner, because their results are the base for a range of different
metrics.

Design Description

The case value calculation (see Figure 6.7) consumes events created in the
event sources, calculates case values based on these events and stores them
in a case value container. For this purpose, a case value calculator contains
a calculateCaseValue method.

There are three different types of case value calculators:

• CountEventsCalculator. This calculator counts events that match its
filter, once an event has passed its until filter for that case.

• IntervalLengthCalculator. This calculator counts the length of an
interval between two events for a case.

• WeightCalculator. This calculator is the most flexible calculator.
When an event occurs that matches its filter, it calculates a value for
that case based on its current state by delegating the main calculation
to its weight.

80 6. System Architecture

Figure 6.7: Design of the case value calculation

6.7 Case Value Calculation 81

A WeightCalculator can be parametrized with one of the following weights:

• DefaultWeight. A weight that returns the number ‘one’ as value.

• AgeInDaysWeight. A weight that returns the age of a case on the
occurrence of the event in days.

• EstimatedRemainingWorkloadWeight. A weight that calculates the
estimated remaining workload in hours for that case on the occurrence
of the event.

• OriginalEffortEstimationAccuracyWeight. A weight that calcu-
lates the accuracy of the original effort estimation by the following
formula:

1−min(1,
|originalEstimatedEffort− actualEffort|

originalEstimatedEffort
)

• MappingWeight. A weight that maps the value of a field to a number.
It can be configured with a field and the mapping of field values to
numbers.

Design Reasons

The three different case value calculators represent the three base cases of
case value calculation that appeared when implementing the metrics from
the requirements:

• Counting events

• Calculation of values on events

• Calculation of the time period length between two events

By using the CaseValueCalculator interface, the design is extensible if other
types of case value calculators are required for new metrics.

The abstraction of using event filters to configure the case value calculators
has two advantages:

• The different concerns of event filtering and calculating case values
are separated. This especially provides independent extendibility of
the event filter variation point and the case value calculator variation
point.

82 6. System Architecture

• Flexible configuration of the case value calculators with different event
filters.

The same applies to the use of weights in the WeightCalculator . It allows
a flexible configuration with different weights and is in fact a separation
of concerns between the calling of a calculation of a certain event and the
calculation itself. Because it is likely that new weights are added, the effort
of introducing them is reduced by this design.

6.8 Case Value Classification

Problem Description

The event based case value calculation creates case values. These case values
should be accessible by the group evaluations and should be grouped as
required for the evaluation. Additionally, the case value groups should be
written to the XML result in the correct structure afterwards. Furthermore,
a nested grouping of case values with different group parameters should be
possible.

Design Description

Case value calculators (see Figure 6.8) create case values and store them in
case value containers. Because the case value containers form a tree, the case
value calculators only access the root container. The correct place for storing
a case value is found by recursion in the tree. The case value calculators use
the methods add and remove to add and remove case values. If they need
to remove case values later, they have to store references on the case values
objects that might be removed by themselves, too.

A case value has the following attributes:

• Date. The date of the event for which the case value was created.

• Value. The value that the case value calculator calculated for that
event.

• State. The state of the case when the event happened.

• Case value calculator identifier. The identifier of the case value calcu-
lator that created the case value.

• Case identifier. The identifier of the case that the event is related to.

6.8 Case Value Classification 83

Figure 6.8: Design of the case value classification

84 6. System Architecture

Figure 6.9: Example for a case value container tree

Based on these attributes, the classification tree is split into the following
different layers (see Figure 6.9):

• Parameter based grouping. There can be one or more tree layers that
group the values according to a certain group parameter. Based on the
value of the case state for the field specified by this parameter, the case
value is forwarded to the correct child container.

• Time period based grouping. Beneath the layers of parameter group-
ings, the case values are groupings according to the time period they
fall into. If they are outside the valid range of time periods, they are
added to a NullCaseValueContainer, which is an implementation of
the null object pattern.

• Case calculator based grouping. In this layer, the case values are
grouped based on their case value calculator identifier.

In each layer of the tree, different types of case value containers are used.

In the parameter based grouping layer, ParameterGroupings are used. They
use CaseValueContainerFactories to produce their child groupings, which
can be ParameterGroupings or TimePeriodGroupings. Therefore there can
be many layers of ParameterGroupings. They distribute case values accord-
ing to the evaluation of the case state with respect to the group parameter.

6.8 Case Value Classification 85

TimePeriodGroupings are used in the next layer. They create DefaultCase-
ValueContainers for all valid time periods and use a NullCaseValueContai-
ner for case values that are outside that range. They distribute the case val-
ues to the correct child container with respect to the time period they fall
in.

DefaultCaseValueContainers are used in the last layer. They distribute
case values according to the case value calculator that created them.

The group evaluation is started by a call of calculate on the root case value
container with a list of the group evaluations as parameter. The method
recurses through the tree to all DefaultCaseValueContainers. These con-
tainers call the createResultElement method of the group evaluation with
themselves as parameter. This is possible because they implement the Case-
ValueListProvider interface required by the group evaluations. The result-
ing XML elements are stored in a list in the DefaultCaseValueContainers.

The XML result creation is also run over the structure of the tree. On the
root case value container, the addXMLElements method is called with a root
element as parameter. Each layer adds its own element that is filled with the
elements of its children by recursion. In the DefaultCaseValueContainers,
the results from the group evaluation are added. This way, the XML result
tree is created.

Design Reasons

The main reasons behind this design are modularization and separation of
concerns. The concern of the case value containers is to classify the case
values and to create the structure of the XML result.

The case value calculators, which create the case values, only know the case
value container interface and are unaware of the composition of the tree.
They only access the root of the tree.

The group evaluations, which calculate XML elements for sets of case values,
are only called with objects that implement the CaseValueListProvider

interface required by them, and do not know the rest of the structure. They
work at the bottom of the tree.

86 6. System Architecture

Figure 6.10: Design of the group evaluation part

Therefore, the complete classification and tree composition and therefore re-
sult composition can be changed without affecting the case value creation
and the group evaluation.

Another important reason is that the tree structure reflects the result struc-
ture to simplify the mapping to XML. Each layer of the tree is mapped to a
layer of XML elements.

6.9 Group Evaluation

Group evaluations (see Figure 6.10) create an XML element for the metric
result DOM by evaluating a set of case values. The set of case values is
restricted to a certain time period and case group, although this is unimpor-

6.9 Group Evaluation 87

<d e t a i l s name=”outgoing ra t e”>
<case id=”1” value=”1” />
<case id=”2” value=”4” />

</d e t a i l s >

Figure 6.11: Detail evaluation result example

tant for the group evaluations themselves. The case values themselves were
calculated and grouped in the case value calculation phase.

Each group evaluation has a name which is used as name attribute for the
resulting XML element. The name of the XML element itself is determined
by the evaluation type. Its method createResultElement is called with dif-
ferent CaseValueListProviders for the different groups and time periods
in the group value evaluation phase. It creates the XML element and fills it
with content that differs with the subtypes of GroupEvaluation.

The method getCaseValues in the interface CaseValueListProvider re-
turns the list of case values for the specified case value calculator. This list
can then be evaluated further by the group evaluations.

There are two basic kinds of group evaluations, calculations and detail eval-
uations.

Detail Evaluation

The detail evaluation lists the case identifier and the value of each case value
of the relevant case value calculator (see Figure 6.11). It is parametrized by
the identifier of the case value calculator.

Calculations

Calculations are complex evaluations that calculate numbers for the case val-
ues passed in a CaseValueContainer. A calculation has a root operation on
which it calls calculate with the CaseValueContainer to get the calculated
BigDecimal. This value is used as text for the resulting XML element.

There are three basic kinds of operations:

• Case value set operations. Case value set operations calculate a value
for a set of case values of the relevant case value calculator. They

88 6. System Architecture

<c a l c u l a t i o n name=”backlog management index 2” >
<div ide>

<subtract>
<sum caseVa lueCa lcu la tor=”outgoingRate ” />
<sum caseVa lueCa lcu la tor=”incomingRate” />

</subtract>
<add>

<sum caseVa lueCa lcu la tor=”outgoingRate ” />
<sum caseVa lueCa lcu la tor=”incomingRate” />

</add>
</div ide>

</ca l cu l a t i on >

Figure 6.12: Calculation specification example

are parametrized with the identifier of that case value calculator. The
different types of case set operations are:

– Count. Counts the number of case values in the set.

– Minimum. Calculates the smallest value of the case values in the
set.

– Maximum. Calculates the largest value of the case values in the
set.

– Median. Sorts the case values by their values and returns the
value of the case value in the middle.

– Sum. Sums the values of the case values.

• Binary operations. Binary operations call two child operations and
combine their results in a specific way to one result. The different
types of binary operations are:

– Addition. Adds the results of the child operations.

– Subtraction. Subtracts the result of the right child operations
from the result of the left one.

– Multiplication. Multiplies the results of the child operations.

– Division. Divides the result of the left child operations by the
result of the right one.

• Constant operation. Returns a value specified in the metric specifica-
tion.

6.10 Information Requirement Abstraction 89

The operations form a tree with the binary operations as inner nodes and
constant and case set operations as outer nodes. This tree is evaluated re-
cursively. An example of a calculation specification is given in Figure 6.12.

Design Reasons

The main reasons for designing the group evaluation in such a configureable
way are flexibility and reuse.

In the context of group evaluations, reuse means that the evaluations of
different metrics were split into their basic parts, which are operations like
sum or divide. These operations are reused in different metrics now. Once
an operation is available, it can be used in any group value calculation.

Flexibility means that by composing the basic parts, new calculations for
new metrics can be defined in the request specification without changing the
software, assuming they compose the available operations in some new way
and do not require additional operations.

These two properties result in a lower cost when calculating the values of
new metrics, compared to a solution were the metrics are defined in a fixed
way in the tool itself. Because it is unclear how the future use of the tool
will evolve with respect to the metrics calculated, a scenario where new or
modified metrics should be evaluated is likely.

6.10 Information Requirement Abstraction

Problem Description

A case consists of different fields like the product it belongs to, the creation
timestamp and so on. In the modified Bugzilla installation used by Kisters,
not all fields are stored in the same way. There are the following different
kinds of storage for case fields:

• Columns in the bugs table. The original fields from Bugzilla are stored
in the original Bugzilla way as columns in the bugs table.

• Rows in the bugs_customfields table. Some of the new fields that
were added are stored as rows in the bugs_customfields table. Each
row contains the case id, the property id and the value.

90 6. System Architecture

Figure 6.13: Design of the information requirements

• Reconstruction from the bugs_activity table. The actual effort field
is reconstructed from the bugs_activity table by selecting all the rows
with a given case id and the actual effort field id and adding the values
from these rows.

• Splitting of fields from the bugs table. The type and the severity of a
case are both encoded in the bug_severity column of the bugs table.
To derive the type and the severity of a case, the value of these fields
needs to be split.

• Derivation of values depending on the current history date and the
value of another field. An example for that is the question if a case is
beyond its deadline at given point of time or not. Such derived fields
are important for flexible filtering, for example.

The usage of the case fields should be independent from their storage and
implementation.

Design Description

InformationConsumers (see Figure 6.13) are objects that require informa-
tion about certain case fields. The following classes are InformationConsumers:

• CaseValueCalculators. They need information about the fields based
on which they calculate values. Furthermore, they need the information
required by their event filters.

6.10 Information Requirement Abstraction 91

• StateFilters. They require information about the fields their case
state filtering is based on.

• EventFilters. They may include state filters and require the infor-
mation required by the state filters.

• GroupParameters. They require information about the field for which
the grouping splits the case values into different groups.

InformationConsumers have InformationRequirements. There are two
types of InformationRequirements: complete and partial information re-
quirements.

• PartialInformationRequirements are information about certain val-
ues of a given field. For example, for a state filter that filters on a
certain product, not all information about product values in cases is
necessary, only information that affects that product.

• CompleteInformationRequirements return all information about a
certain case field. This is the case for group parameters, which do
not know which groups there are in advance.

InformationRequirements are collected in an InformationRequirement-
Container. This container automatically consolidates the requirements by
unifying PartialInformationRequirements and replacing PartialInfor-
mationRequirements with CompleteInformationRequirements when ap-
propriate.

All InformationRequirements are directed on one specific field, which is
one case field. For example, a group parameter that creates the groups ac-
cording to the assignee has a CompleteInformationRequirement about the
field assignee, which is a regular field stored in the bugs table.

For the different types of case field representations in the database, there
are different types of fields:

• Regular fields represent case fields that are stored as columns in the
bugs table.

• Custom fields represent case fields that are stored as rows in the
bugs_customfields table.

• The actual effort fields represents the actual effort value reconstructed
from the bugs_activity table.

92 6. System Architecture

• Derived bug severity fields represent the fields derived from the bug
severity regular field. These are the type and the severity field.

• The derived beyond deadline value is represented by the special Beyond-
DeadlineField.

A case maps fields to the current values of these fields. It has no information
about the way they are stored.

Design Reasons

The goal of this design is to achieve independence of the use of the case prop-
erties from the way they are stored and retrieved. These different concerns
are separated by this design.

By hiding the details of the storage of the case fields, the following advan-
tages are achieved compared to an implementation where those details are
not hidden:

• Reduced complexity for using the case fields. When using case fields
in the information consumers, the software developer does not need to
think about the way these fields are stored.

• Independent extendibility. The storage of the case fields can change
without affecting the InformationConsumers and the InformationCon-
sumers can change without affecting the field representation. This
especially means that both can be extended and modified without af-
fecting each other.

• Additional performance optimization at a higher level. The Informa-
tionRequirementContainer can optimize the InformationRequire-
ments by unifying and replacing them before they are passed to a lower
level. This makes the optimization on the lower levels simpler. Addi-
tionally, the optimization on the higher level is more robust assuming
the lower levels are more likely to change.

The main disadvantage is the increased design complexity introduced to
achieve the separation of concerns.

6.11 Data Source Abstraction 93

Figure 6.14: Design of the data source abstraction

6.11 Data Source Abstraction

Problem Description

The different field types are implemented in different ways. But their imple-
mentation is not the only difference, searching and accessing them is different,
too. Furthermore, they have different associated event sources.

Design Description

For each of the different field types, a special DataSource exists (see Figure
6.14). Each data source provides a specific implementation of the following
features:

94 6. System Architecture

• Fields. Each data source returns the list of fields it provides. The
fields are usually objects of a data source specific implementation of
the Field class (see Section 6.10). The fields are accessed through the
getFields method.

• Search functionality. Each data source provides support for search-
ing cases by values of their fields. This search functionality is imple-
mented in a data source specific way. This is done by implementing
the createIDRequest method.

• Field initialization. Each data source provides support for the ini-
tialization of the current values of its fields in a case. The fields are
initialized in the initCases method.

Optionally, a data source can implement the following interfaces:

• EventSourceProvider. Data sources implementing this interface pro-
vide an EventSource that is used in the event creation. The data
source specific implementation of the event source must take care of
updating the relevant cases on events.

• DerivedDataSource. Data sources that depend on other data sources
because their fields are derived from some other fields implement this
interface. DerivedDataSources are called upon change events and can
update the derived fields in cases. After updating the values, they
should send events regarding their changes to the EventListener that
is given as parameter.

The MetricCalculation object depends on the abstract DataSource class,
the Field class and the additional interfaces. It does not know the concrete
data source implementations. In the configuration phase, the data sources
are created and the metric calculation is parametrized with them.

Design Reasons

The main design reasons for this kind of abstraction where already discussed
in the design reasons subsection of Section 6.10.

6.12 SQL Access Abstraction

Problem Description

Different data sources access the SQL database of Bugzilla with different
SQL queries that are calculated based on the information requirements of

6.12 SQL Access Abstraction 95

Figure 6.15: Design of the SQL abstraction layer

the current metric. The SQL queries should optimize themselves. Only a
sub-part of the SQL query language is used.

Design Description

The method executeQuery of the SQLFacade (see Figure 6.15) encapsulates
the access to the SQL database. It executes select queries, which are supplied
as an Select object parameter. For the result evaluation, executeQuery

calls the callback interface SelectResultEvaluator for each row in the re-
sult set. Thus, it hides a large part of the complexity of using the java.sql

API from the client.

The Select class represents a SQL select query. It contains different parts
which are Criteria, and a list of target Columns for each part. The SQL
select strings generated for each part are joined by SQL union statements
and the order is specified.

A column has a name, a table it belongs to and a flag whether its type
needs quotation marks or not. For example, integer columns do not need
quotation marks, whereas timestamp columns do. This was the simplest
sufficient way to model SQL columns for the select queries required by the
clients.

96 6. System Architecture

The Order class has a column that the order is computed for and a flag
whether the order is ascending or descending.

The Criterion class models the WHERE part of the SQL statement. Cri-
teria can form a tree and are evaluated recursively in the toSQL method that
converts the criterion to the WHERE part of the SQL statement.

The Criterion class acts as facade for creating certain criteria, too. The
subclasses except CombinationCriterion are only visible in the sql package.
The following methods are provided by the Criterion class for creating cri-
teria:

• And. Creates a CombinationCriterion that serves as a SQL AND state-
ment.

• Equals.Creates a ComparisonCriterion that serves as a SQL = state-
ment.

• Everything.Creates a ConstantCriterion that serves as a SQL TRUE

statement.

• GreaterThan.Creates a ComparisonCriterion that serves as a SQL
=> statement.

• In.Creates a InCriterion that serves as a SQL IN statement. An
InCriterion optimizes itself to a = or TRUE statement for the special
cases of a set with one respectively zero elements.

• Or. Creates a CombinationCriterion that serves as a SQL OR state-
ment.

Both criteria and order objects are TableProviders. The Select class uses
table providers to calculate the FROM part of the select query.

Design Reasons

The SQL statements are calculated based on information requirements that
vary from metric to metric. By identifying the abstract elements that vary
and using them as input for the creation of the SQL query string, the con-
cerns of specifying the query and translating it to valid SQL are separated.

The clients only need to specify on a high level which rows should be se-
lected, which columns should be selected and the way the result should be

6.13 Efficiency Optimizations 97

ordered. Because the specification is done in an object structure, one query
can be specified by the cooperation of several clients that do not know each
other.

Furthermore, by hiding the creation of the SQL statement itself, the SQL ab-
straction layer can optimize the generated SQL statement. The InCriterion
and the CombinationCriterion do that by handling special cases differently.
The clients remain simpler because they do not contain the SQL statement
generation and optimization.

By encapsulating the SQL statement generation and optimization in one
package, the logic can be reused from different clients that access the SQL
database.

6.13 Efficiency Optimizations

Execution Time Optimizations

The algorithm itself was designed considering the overall execution time. The
following design decisions were taken in advance on algorithm design level
with respect to the execution time:

• The set of cases that are evaluated is restricted by a base filter.

• The case value calculation phase is only executed once to reduce the
amount of queries that retrieve values from the database.

• All case value calculators calculate their values during the same single
run over the history of the cases.

Further optimizations were implemented after the algorithm was tested with
real data, because it did not terminate within several minutes on a test
system:

• Unnecessary join statements between the bugs and the bugs_activity
table were removed. This improved the execution time of database
queries significantly.

• SQL IN statements were used instead of OR statements for the selec-
tion of cases by their identifiers from the bugs, bugs_activity and
bugs_customfields tables. This further improved the execution time
of those queries significantly.

98 6. System Architecture

• If possible, the time period for which the history is reconstructed is
limited to the evaluation time period specified in the metric specifica-
tion. This means that the SQL queries on the bugs_activity table
contain that time restriction and return a limited set of results only.

• The Criteria from the object structure that represents an SQL SELECT

query optimize themselves when they are converted to SQL:

– IN converts to FALSE for the special case of set size zero.

– IN converts to = for the special case of set size one.

– AND converts to FALSE, if at least one child of AND is FALSE.

– OR converts to TRUE, if at least one child of OR is TRUE.

– AND converts to the result of its child, if it has only one child.

– OR converts to the result of its child, if it has only one child.

• It is checked whether the WHERE part of SQL statements is FALSE or
not. The SQL statements are only executed if the WHERE part is not
FALSE.

• InformationRequirements are automatically consolidated when added
to an InformationRequirementsContainer. Such a container con-
tains at most one requirement per field because of this consolidation.

• In the base case set selection, the InformationRequirements of or

parts are consolidated in a container. Therefore, the number of SQL
queries for or parts is reduced.

After implementing the optimizations mentioned above, the results for the
different metrics where calculated in less than one minute on a test system
with the real data. Most metrics were calculated in less than twenty seconds
on that system. The fastest metrics were calculated in less than five seconds.

The following optimizations were planned at first, but they were not im-
plemented due to different reasons:

• In the base case set selection with and, multiple SQL queries are ex-
ecuted. The idea was to add the set of possible valid identifiers as
constraint to the SQL queries. Unfortunately, this was a lot slower
than executing the set cut operation in the tool itself.

• In the base case set selection, similar criteria for and should be executed
in one SQL statement. Unfortunately, this turned out to be problematic
because there is a combinatorial explosion of possibilities.

6.14 Test Framework 99

Memory Consumption Optimizations

When testing the tool for the first time with real data, OutOfMemoryErrors
occurred because there were problems with the memory usage efficiency. The
following changes were implemented to cope with that:

• The creation of new immutable objects with the same state was re-
placed by using the same immutable object at the following occur-
rences:

– When retrieving the current state of a case, a new case state object
is only created if the case has changed. Otherwise, the current case
state object is returned. This prevented an OutOfMemoryError

that existed because new case state objects were created at the end
of each time period in certain case value calculators configurations.

– The BigDecimal objects with the values zero and one, which are
used quite often in weights and calculations, are stored as con-
stants in a special class called Numbers.

• A special hash map that uses linear probing and expansion by doubling
[Sed03, Chapter 14] for long values and Identifiable objects was
implemented. Both Case and CaseValue objects are Identifiables.
This hash map does not need wrappers for the long values and therefore
consumes less memory and is faster than the default implementation
in the java.util package.

• The XML output is written to an output stream instead into a string.
Therefore, the result string which can be very large is not stored in the
memory.

After these optimizations, OutOfMemory errors disappeared and the execution
time was further reduced, too.

6.14 Test Framework

Problem Description

The test driven development approach of the software process requires a
testing framework that simplifies the implementation of tests on specification
level. JUnit, the default approach for unit testing in Java, is not suited well
for such tests, because it is primarily designed for tests on unit level.

100 6. System Architecture

Design Description

The tests are specified in XML files and plain text files. There are four
different kinds of files, all in different directories:

• Expected result files. These files contain the expected metric result
XML document. Their name is the name of the database configuration
file and a dot followed by the name of the metric request file. By this
configuration, they specify the expected result for running the metric
request over the database configured with the database configuration.

• Metric request files. These files are referenced from the name of the
expected result file and contain a metric configuration XML document.

• Database configuration files. These files are referenced from the name
of the expected result file, too. They contain a database content setup
specified in XML.

• Expected SQL query files. These files are optional. If for an expected
result file an expected SQL file exists, the SQL queries are checked,
too. The file contains an ordered list of SQL statement, one per line.

The test framework reads the estimated result files. For each expected result,
it sets up the database according to the referenced database configuration file
and executes the algorithm with the content of the referenced metric request
file as input. The result is compared to the content of the expected result file.
If an expected SQL query file exists, the send SQL statements are checked,
too.

The test framework itself is implemented as a JUnit test case with several
helper classes.

Design Reasons

This design has the following advantages compared to testing without such
a framework, especially compared to testing on unit level:

• The test cases are on specification level.

– The test cases are more stable against refactorings, because they
are on a higher level than unit tests.

– The test cases serve as a reference for the specification of metric
requests.

6.14 Test Framework 101

Figure 6.16: Design of the test framework

• The test cases are independent of the programming language.

– For specifying test cases, programming knowledge is not required.

– The test cases are portable to other platforms. For example, if the
complete tool would be redeveloped in C#, the test cases could
be reused with a different test framework. It could be checked
that both the Java and the C# implementation of the tool would
produce the same results on the same inputs.

• The test framework is rather small. With the DB setup classes, it
consists of seven classes with 476 LOC. The test class itself has only
166 LOC.

• Database configurations and metric requests can be reused in different
expected metric results.

Unfortunately, there are some disadvantages and limitations, too:

• The units of the tool are not tested directly. For that reason, reusing
them independently is problematic.

• Some minor changes to the design where necessary to achieve the re-
quired level of testability:

– Additional sorting in the algorithm was added to achieve a stable
and therefore testable output.

– A special test hook was added to the SQL access abstraction part
for testing the SQL queries.

102 6. System Architecture

Figure 6.17: Design of the chart module

• When the metric request format changes, all metric requests must be
adjusted.

• When the metric result format changes, all expected metric result files
must be adjusted.

6.15 Chart Module

Problem Description

The chart module should create a chart for the results of a metric run, the
used metric configuration for that run and a chart configuration.

Design Description

The chart module is accessed through the ChartFacade (see Figure 6.17).
The ChartFacade contains the method createChart that takes an XML
element as input and returns a chart object. It uses the charting library
JFreeChart [JFR] version 1.0.3 for the creation of the charts.

The XML element contains the metric run element returned as result from
the core module and a chart configuration. The chart configuration element
allows the following parameters to be configured:

• Title. The title text for the resulting chart can be configured freely.

• Different charts. The resulting chart can be composed of multiple child
charts. For each subchart, the following properties can be configured:

– Displayed calculation results. The calculations for which results
should be shown in the subchart can be specified.

– Range axis label. The text for the range axis label can be specified
freely.

6.16 Frontend 103

– Chart type. The subchart can be a line chart or a stacked area
chart.

• Domain axis markers. Different markers on the domain axis, for ex-
ample to display release dates, with different labels and dates can be
specified.

Design Reasons

There are several reasons for the chosen design.

JFreeChart is used because it is a flexible, free, powerful and stable library
for charting. The effort for creating charts using JFreeChart compared to
the development of a custom charting solution is significantly lower.

The facade hides the implementation details of the charting module from its
clients. Therefore, it can be restructured easily without affecting its clients.
The facade also provides an access point for stable module testing.

The usage of an XML element as parameter provides independence from
the core module. The data for the charting module might come from other
metric tools, too, as long as it conforms to the expected format. Further-
more, the usage of an XML element as parameter provides a stable interface
in terms of the Java method interface. The method can provide backward
compatibility for future extensions by adding default values for additional
parts of the XML element, and the clients are not affected because the Java
method interface remains stable.

6.16 Frontend

Problem Description

A preliminary frontend to the core and chart module should be provided that
enables users to evaluate metrics and display the metric results in charts. The
programming effort should be minimized, because the main focus is on the
core module.

Design Description

The frontend is implemented as Servlet using the Java Servlet API. It is a
subclass of HttpServlet that evaluates the contents of a HTML form pro-

104 6. System Architecture

Figure 6.18: Design of the web frontend

vided by a simple HTML page. During the evaluation, it uses the CoreFacade
and the ChartFacade to access the core and chart modules.

The form contents sent to the Servlet are mainly XML configuration data
that is forwarded to the other modules.

Design Reasons

The implementation as a web frontend was chosen as solution for the follow-
ing reasons:

• Programming effort. The programming effort for a web frontend so-
lution is much lower than a GUI solution. A simple command line
interface requires an even lower programming effort, but it has other
disadvantages.

• Administration effort. The administration effort for a web frontend
solution is lower than the administration effort for a GUI or command
line solution. This is because only one installation must be maintained,
the users access the web frontend with a web browser. In the other
cases, there must be an installation on each client computer.

• Tool integration. Other tools can access the web frontend using HTTP
and further process the results. In the GUI solution, such an interaction
is hardly possible. In the command line solution, this is a distribution
and maintenance problem.

The web frontend was implemented in Java because the main interfaces of
the core and chart module are implemented in Java.

Chapter 7

Evaluation

In this chapter, the software process, the developed software product and
some metrics that were calculated using the product are evaluated.

7.1 Software Process Evaluation

The evaluation of a software process by comparison to other processes is diffi-
cult, because the project, the participants and the circumstances are unique.
Therefore a comparison to the same project executed with a different soft-
ware process is often impossible. In the context of this project, this was the
case.

Another way of evaluating software processes is using a standardized model
like CMM/CMMI or SPICE [LL06, Chapter 11]. These models were devel-
oped to measure the software process maturity in companies and are therefore
not applicable here.

Because the first two approaches to software process evaluation are not really
applicable here, I have chosen a third way. The evaluation that follows is
based on the process classification and process characteristics described by
Sommerville [Som04, Chapter 28].

7.1.1 Process Classification

Sommerville describes four overlapping categories of processes [Som04, p. 670]:
informal, managed, methodical and improving processes.

As the process used in the project has been chosen by the developer and

105

106 7. Evaluation

there is not strictly defined process model, it is an informal process and thus
not managed. Furthermore, it is neither methodical, because no CASE tools
for design and analysis have been used, nor improving, because there were
no improvement objectives.

According to Sommerville, informal processes are an appropriate choice for
small-sized systems like the product developed in this project.

7.1.2 Process Characteristics

Sommerville describes eight process characteristics [Som04, p. 667] which are
evaluated in the following. A general problem of the evaluation that should
be considered is the fact that small projects like this one depend more on
people quality than on process quality. Therefore, the process evaluation
might be influenced by the people quality, especially when it come to robust-
ness and rapidity.

The process characteristics understandability, acceptability, reliability and
maintainability are not applicable here because the software process was car-
ried out by one person.

Visibility. The first two iterations produced requirements specifications,
and the other iterations produced milestones releases. Therefore, a visibility
on this high level is given. On a lower level, the visibility is rather limited.
Each functional metric requirement from the specification is implemented by
a test case, therefore a certain visibility is provided here, too. But there is
no further visibility on this level. Therefore, the overall visibility is on a low
to medium level.

Supportability. Although the complete development process from require-
ments engineering to deployment is not supported by CASE tools, such tools
were used to a certain extent. In the implementation and rollout iterations,
CASE tools like an IDE, refactoring tools, unit testing tools, build tools, a
revision control system and UML tools were used. In fact, the development
process would be too inefficient to be useful without the use of refactoring
and unit testing tools. Therefore, the supportability is on a medium level.

Robustness. There were some unexpected problems during the develop-
ment process. The requirements changed: the requirement for an advanced
user interface was dropped and replaced by the requirement of an XML in-
terface. Furthermore, serious system performance problems were discovered

7.2 Software Product Evaluation 107

while testing the second milestone on real data. The process provided the
frame for dealing with these problems in a controlled manner. The problems
were resolved quickly. Therefore, the robustness of the process is high.

Rapidity. The rapidity of the process was perceived by the developer to
be fast. But because there is no comparison available of how fast other
processes would have performed under the same circumstances, there is no
objective data that supports this perception. Furthermore, it is estimated
that about fifty percent of the development time was used for refactoring and
restructuring. It is unknown to what extent this is relativized by the reduced
amount of time spent on design, analysis and documentation and how this
activity distribution affects the product quality. Therefore, a well-founded
evaluation of rapidity is not possible.

7.2 Software Product Evaluation

In this section, the software is evaluated according to the criteria in the ISO
9126 norm [Bal98]. The criteria defined in the ISO norm were preferred to
the model provided by Boehm [BBL76] because it is an official, standardized
norm.

7.2.1 Functionality

Suitability. The metrics that were defined in the requirements specification
are all covered by tests on specification level. The functional requirements
for the chart module are covered by tests, too. That way, it is ensured that
the functional requirements from the specification are implemented. The
requirements engineering itself was a combination of domain analysis, an
evaluation of existing tools and meetings with future users. It was revised
several times until all stakeholders were satisfied with the set of requirements.

Accuracy. The metrics that were defined in the requirements specifica-
tion are all covered by tests on specification level. Therefore, the agreed
results and the precision of the calculations were checked. Furthermore, the
software was tested against real data and the results were presented to and
discussed with the future users. The results seemed plausible.

Interoperability. The software was designed to work on the data provided
by Bugzilla based on the SQL interface of the Bugzilla database. In the other
direction, it provides XML interfaces that can be called over HTTP. That

108 7. Evaluation

way, it is easy for other tools to use the functionality provided by the soft-
ware. The other tools are not restricted to certain languages or frameworks.

Compliance. This criterion is not applicable here, because there are no
official standards or regulations in laws that are relevant for the developed
tool.

Security. Because the software is installed on a Kisters-internal server, only
Kisters employees can use it. This was the only security constraint, each
Kisters employee should be able to use the full functionality of the software.
Therefore, all security requirements are fullfilled.

7.2.2 Reliability

Maturity. The software has not been in production use yet. Although the
frequency of failures is not expected to be high, because the system was de-
veloped using a test driven implementation of the specification and has been
tested with real metrics on real data, some failures will probably occur.

Fault tolerance and recoverability. The software handles each request
separately and does not manage persistent data. This behavior is supported
by the Servlet architecture that handles each request in a separate thread. If
there are errors in the processing of one request, the other requests are not
affected, and the Servlet remains responsive.

7.2.3 Usability

The tool will probably be used as a service or library in the future. Other
tools will communicate with it through its interfaces, and direct user inter-
actions are less likely. Therefore, the usability of the software was considered
to be less important than the functionality, efficiency and maintainability.
Thus, the following sections deal with the usability of the XML interface.

Understandability and Learnability. The basic logical concept of the
application is a simple data processing concept. It takes a metric specifica-
tion as input and calculates the result as output. The concepts of the XML
interfaces for the metric specification and the results are well structured and
do not overlap as far as possible. But because it has not been used by many
other people, the understandability and learnability is quite unknown yet
and still needs to be verified.

7.2 Software Product Evaluation 109

Metric Total Mean Maximum
Total Lines of Code 5453

Method Lines of Code (avg/max per method) 2158 3.18 31
Weighted Methods per Class (avg/max per type) 941 5.47 46

Number of Methods (avg/max per type) 643 3.73 30
Number of Classes (avg/max per package) 172 8.19 19

Number of Interfaces (avg/max per package) 24 1.14 5
Number of Packages 21

Figure 7.1: Size metrics for core module

Operability. The software is executed as web application in a web ap-
plication container that supports the Java Servlet Specification 2.3 [SER]
like Apache Tomcat [TOM] on a server. Thus, the effort for operability is
rather low.

7.2.4 Efficiency

Time behavior. The time behavior of the software was optimized (see Sec-
tion 6.13) after using it on real data for the first time. On the test system,
the results for metrics were returned within ten to twenty seconds on aver-
age, with a maximum return time of less than one minute. As it is expected
that the metrics are not likely to be calculated in parallel, this is acceptable.
Because the production system is faster than the test system and the test
system contained a recent snapshot of the production system data, it is ex-
pected that the system is faster when put to production use.

Resource behavior. The resource behavior of the software was optimized
(see Section 6.13) after using it on real data for the first time. In a de-
fault configuration of the Java Virtual Machine, no resource problems were
discovered.

7.2.5 Maintainability

Analyzability, changeability and stability. These qualities are mainly
based on the structure of the software. The use of many software design
principles was already discussed in Chapter 6. In the following, a metric
evaluation of the core module is presented. The chart and web frontend
modules have less than 250 lines of code each, so such an evaluation does not
make sense for them.

110 7. Evaluation

Figure 7.2: Distance graph of core module packages

The basic size metrics (see Figure 7.1) show that the code is modularized
well. The methods, classes and packages are small in the average, and the
maximum values are still acceptable. The weighted methods per class metric
[HS96, p. 127], which is a size measurement that is more language indepen-
dent than the lines of code, shows that the class and method complexity is
rather low. The modularization into small, understandable units improves
the analyzability, changeability and stability of the code.

On the package level, there are no cycles between packages. According to
Robert C. Martin, the packages should be grouped near to a main sequence
when analyzed on instability and abstractness, with unstable, concrete pack-
ages depending on the more stable, abstract packages [Mar94]. Figure 7.2
shows the different packages according to their instability and abstractness,
although the package dependencies are not shown. Their distance from the
main line is rather limited. The only package that has a big distance is the

7.3 Metric and Usage Evaluation 111

sql.model package, and that is because it only contains constants describing
the database layout. The dependencies are mostly from unstable to stable
packages. An exception are the util and sql packages, which are refer-
enced from more abstract and stable packages. Overall, the directions of the
package dependencies and distribution of the packages in the distance graph
indicates good analyzability, changeability and stability.

Testability. Many of the arguments from the previous paragraphs also ap-
ply to testability. Furthermore, because the system was developed in a test
driven manner, there are some hooks for advanced testing, and the testability
is height in general.

7.2.6 Portability

Adaptability and Installability. The software is deployed as a web ap-
plication for the Java Servlet Specification 2.3 [SER]. It is therefore easily
installable on every web application container that supports this specifica-
tion.

Conformance. The software is implemented as a web application according
to the Java Servlet Specification 2.3 [SER] and was written in the program-
ming language Java for the J2SE 1.4.2 [JAV]. Therefore, it can be deployed
on each platform that is supported by Java and into each web application
container that supports the Java Servlet Specification 2.3.

Replaceability. The communication of other tools and the user with the
software is based on HTTP and XML. The XML interfaces are specified by
XML schema files and tests on specification level.

7.3 Metric and Usage Evaluation

Discussions of the metrics and charts created by the tool with the users gave
a first impression of the advantages and problems of the tool and its usage.

One important advantage is that vague assumptions about certain develop-
ments are now supported by concrete figures. For example, the assumption
of a constantly increasing workload was supported by the totals metrics and
the remaining estimated workload metric.

112 7. Evaluation

Figure 7.3: Example output of the chart module

Furthermore, the results from the tool can be used to control certain im-
provements, for example the falling rate of cases without original estimate
and the falling rate of bugs without target milestone.

Another insight was that the metrics cannot be taken into account with-
out further interpretation. Certain actions like a cleanup of the cases in the
Bugzilla database have a profound impact on the metrics and without the
knowledge of such events, misinterpretations are likely.

It should be noted that the figures themselves were not that useful with-
out being displayed in charts. The visualization provided the foundation for
an easy and efficient interpretation (see Figure 7.3).

Furthermore, there were some problems related to the metrics themselves
that occurred during the first evaluations. They are described in the follow-
ing:

7.3 Metric and Usage Evaluation 113

Problems comparing incoming and outgoing rate

There are some problems comparing the incoming and outgoing rate, which
then as consequence affect the backlog index.

If the incoming rate is defined as the number of cases created in a time
interval, and the outgoing rate is defined as the number of cases resolved in
a time interval, there are the following problems:

• Cases can be resolved multiple times if they are reopened

• Cases that are created outside the scope of the base filter and moved
into its scope can be resolved and counted in the outgoing rate, but are
not counted in the incoming rate. An example for this is the scenario
when cases are filtered for a given product, but some cases were created
in another product and then moved into the filtered product.

• Cases that are created inside the scope of the base filter and moved out-
side its scope are counted in the incoming rate, but not in the outgoing
rate

This problem can be solved by changing the metric specification to take care
of all these effects. For example, cases moved outside the scope of the base
filter could be added to the outgoing rate.

Problems selecting the granularity of time periods

If the granularity of the time periods is too small, metrics that do not sum,
but calculate the number of events in a time period can be too volatile to
allow a good interpretation. Examples of this problem are the incoming and
outgoing rate with a time period granularities like week or day, depending
on the size and activity of the analyzed product or component.

If there are only a few events in a time period, their amount is mostly ran-
dom. But if the time period is large enough, the values of the time periods
become comparable. In my opinion, this is related to the law of large numbers
[Hüb03, p. 116].

Problems with the maximum and average values

Often, some cases exhibit extremely large and uncommon values. This may
affect metrics which calculate average and maximum numbers over the cor-
responding case attributes. For example, the age of a case can be really large

114 7. Evaluation

for some cases in a group, because they are regarded as unimportant and lay
dormant for a long time. This leads to a high maximum, and more impor-
tantly, such extreme values affect the average. Therefore, it is recommended
to prefer the median over the average value under such circumstances.

Problems with the backlog management index

The management backlog index (BMI) is defined as [Kan95, p. 105]:

BMI =
outgoingRate

incomingRate

When the result is rendered in a chart with a linear scale on the range axis,
the interval lengths for differences on the range axis are not comparable. For
example, if the outgoing rate is twice as big as the incoming rate, the BMI
is 2, whereas in the opposite case, the BMI is 0.5. If one compares the dif-
ferences from the equal value 1, the difference is 1 in the first case and 0.5 in
the second. This makes interpreting the charts more difficult.

One solution to the problem is the use of a logarithmic scale, and the another
one is a different definition of the BMI:

BMI
′
=

outgoingRate− incomingRate

outgoingRate + incomingRate

That way, the backlog index is normalized and returns values within the
interval [−1, 1]. But is was perceived as unintuitive if the BMI is above zero
if the backlog decreases and below zero if it increases. A third variant of the
BMI solves this problem:

BMI
′′

=
incomingRate− outgoingRate

incomingRate + outgoingRate

This variant is even closer to the definition of the backlog. Often, it is
desireable to use the original differences instead of the normalized ones, which
is the definition of the backlog itself:

backlog = incomingRate− outgoingRate

The advantage of using the original values instead the normalized ones is
that one sees directly how the backlog affects the totals.

Chapter 8

Summary and Perspective

The goal of the project was the development of a software tool for the eval-
uation of change requests.

The requirements engineering consisted of four basic activities: an evalu-
ation of the existing tools, a domain analysis, meetings with the stakeholders
and the creation of the requirements specification.

At first, I evaluated four existing change request management tools. I an-
alyzed them with respect to their capabilities in change request evaluation.
Their similarities and differences were summarized and used as input for the
domain analysis.

The other three activities were executed in an iterative way. The domain
analysis consisted of the creation of concept maps and a glossary. The re-
sults of the domain analysis were used as input for the meetings, and the
results of the meetings were used to revise the domain concepts and to cre-
ate a requirements specification.

The result of the requirements engineering was a first scheme of the algorithm
and a clear separation of concepts like case filtering, case value calculation,
group value calculation and case grouping. Furthermore, many concrete met-
rics and the basic constraints like the choice of the programming language
were specified.

115

116 8. Summary and Perspective

The tool was then implemented in an iterative way. After the first two im-
plementation iterations, the tool was tested and optimized on real data and
some preliminary charts for some metrics were created. In the next iterations,
the chart component and the web frontend were added and the robustness
and documentation of the tool was improved.

The first impressions of the usage of the calculated charts and metrics con-
firmed the assumption that the tool can be useful for assessing the current
state of products and projects with respect to the remaining workload, the
process speed and quality and the product quality. Furthermore, it showed
that the interpretation of the metric results needs to be done carefully, and
that the specification of the metrics has to be done carefully, too.

In the evaluation part of the thesis, the tool was analyzed according to the
ISO 9126 norm and the requirements specification. Additionally, the soft-
ware process was evaluated, too.

There are several possibilities for future extensions to the tool. They are
listed in the following:

• A user interface that is easy to use could be created. This is important
for the acceptance and the use of the tool. The problem is displaying
and editing the complicated metric specification in a user-friendly way.

• A link between Bugzilla and version control systems like CVS or Sub-
version could be established. The tool could then be extended to eval-
uate metrics that use data from the version control systems like the
number of changed lines for certain cases.

• The calculation of metrics that start at different time points, for exam-
ple to compare different releases, could be added.

• The tool could be wrapped as a web service to simplify the interaction
with other tools.

• There could be a link from the chart to the cases that were used in
certain groups. For example, clicking into the chart could open a new
window containing the relevant cases and their links to Bugzilla. But
it should be considered that for more complex metrics, this can be
problematic because their values are not directly derived from the cases,
but calculated, and therefore their link to certain case is less obvious
and can be misleading.

117

• The chart module could be further extended. The formulas of the
group value calculations could be displayed in the charts. The units
on the range axis of the chart could be calculated automatically. Valid
ranges could be marked in the charts by providing a mechanism for the
specification of range markers. The charts could actively display the
values of the lines when moving the mouse cursor over them.

To sum it up, a flexible tool for the evaluation of change requests was created.
It offers the possibilities of putting it into production use and using the
metrics calculated by it in the context of process and product evaluation and
improvement in a real world scenario.

118 8. Summary and Perspective

Appendix A

Used Software

• Java Development Kit 1.4.2.13
Compiler and Platform
http://java.sun.com/j2se/1.4.2/

• Eclipse 3.3 Milestone 4
Integrated Development Environment
http://www.eclipse.org

• Subversion 1.4.2
Revision Control System
http://subversion.tigris.org/

• MySQL 4.1 Community Edition
Database
http://www.mysql.com/

• Apache Tomcat 5.0.28
Servlet container
http://tomcat.apache.org/

• Apache Ant 1.6.5
Build Tool
http://ant.apache.org/

• JFreeChart 1.0.3
Charting Library
http://www.jfree.org/jfreechart/

• Java Servlet API 2.3
Servlet Library
http://java.sun.com/products/servlet/

119

http://java.sun.com/j2se/1.4.2/
http://www.eclipse.org
http://subversion.tigris.org/
http://www.mysql.com/
http://tomcat.apache.org/
http://ant.apache.org/
http://www.jfree.org/jfreechart/
http://java.sun.com/products/servlet/

120 A. Used Software

• Apache Log4J 1.2.13
Logging Library
http://logging.apache.org/log4j/

• Apache Xerces2 Java Parser 2.9.0
XML Processing Library
http://xerces.apache.org/xerces2-j/

• JDOM 1.0
XML Processing Library
http://www.jdom.org/

• JUnit 3.8.2
Test framework
http://www.junit.org/

• CAP 1.2.0
Source Code Analyzer Plugin for Eclipse
http://cap.xore.de/

• TagSEA 0.5.0
Source Code Navigation Plugin for Eclipse
http://tagsea.sourceforge.net/

• Sysdeo Eclipse Tomcat Launcher plugin 3.2 beta2
Apache Tomcat Launcher Plugin for Eclipse
http://www.sysdeo.com/eclipse/tomcatplugin/

• Subversive 1.1.0
Subversion Plugin for Eclipse
http://www.polarion.org/index.php?page=overview&project=subversive

• Checkstyle 3.5.0
Coding Conventions Checking Plugin for Eclipse
http://eclipse-cs.sourceforge.net/

http://logging.apache.org/log4j/
http://xerces.apache.org/xerces2-j/
http://www.jdom.org/
http://www.junit.org/
http://cap.xore.de/
http://tagsea.sourceforge.net/
http://www.sysdeo.com/eclipse/tomcatplugin/
http://www.polarion.org/index.php?page=overview&project=subversive
http://eclipse-cs.sourceforge.net/

Bibliography

[APA] Apache Lucene. http://lucene.apache.org/. [Online, accessed
January 26, 2007].

[ATL] Atlassian Software Systems Pty Ltd. http://www.atlassian.

com/. [Online, accessed January 26, 2007].

[Bal98] Helmut Balzert. Lehrbuch der Softwaretechnik: Software-
Management, Software-Qualitätssicherung, Unternehmensmodel-
lierung. Spektrum, Akademischer Verlag, 1998.

[BBL76] Barry W. Boehm, J. R. Brown, and M. Lipow. Quantitative
evaluation of software quality. In ICSE, pages 592–605, 1976.

[Bec00] Kent Beck. Extreme Programming Explained - Embrace Change.
Addison Wesley, 2000.

[BUGa] Bugzilla. http://www.bugzilla.org/. [Online, accessed January
26, 2007].

[BUGb] The Bugzilla Guide. http://www.bugzilla.org/docs/. [Online,
accessed February 11, 2007].

[Buh04] Axel Buhl. Grundkurs Software-Projektmanagement. Hanser,
2004.

[COD] Code Beamer. http://www.intland.com/products/

codebeamer.html. [Online, accessed January 26, 2007].

[DeM95] Tom DeMarco. Why Does Software Cost So Much? And Other
Puzzles of the Information Age. Dorset House Publishing Com-
pany, Incorporated, 1995.

[FP96] Norman E. Fenton and Shari L. Pfleeger. Software Metrics. A
Rigorous and Practical Approach. PWS Publishing Company,
Boston, MA, 1996.

121

http://lucene.apache.org/
http://www.atlassian.com/
http://www.atlassian.com/
http://www.bugzilla.org/
http://www.bugzilla.org/docs/
http://www.intland.com/products/codebeamer.html
http://www.intland.com/products/codebeamer.html

122 Bibliography

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison Wesley, 1994.

[HS96] Brian Henderson-Sellers. Object-oriented metrics. Measures of
complexity. Prentice-Hall, 1996.

[Hüb03] Gerhard Hübner. Stochastik. Eine anwendungsorientierte
Einführung für Informatiker, Ingenieure und Mathematiker. 4.
Auflage. vieweg, 2003.

[INT] Intland GmbH. http://www.intland.com/. [Online, accessed
January 26, 2007].

[JAV] Java 2 Platform, Standard Edition (J2SE) 1.4.2. http://java.

sun.com/j2se/1.4.2/. [Online, accessed February 16, 2007].

[JFR] JFreeChart. http://www.jfree.org/jfreechart/. [Online, ac-
cessed January 31, 2007].

[JIR] JIRA. http://www.atlassian.com/software/jira/. [Online,
accessed January 26, 2007].

[Kan95] Stephen H. Kan. Metrics and Models in Software Quality Engi-
neering. Addison-Wesley, Reading, MA, 1995.

[LEV] Wikipedia: Levenshtein Distance. http://en.wikipedia.org/

wiki/Levenshtein_Distance/. [Online, accessed February 17,
2007 14:26 CET].

[LL06] Horst Lichter and Jochen Ludewig. Software Engineering -
Grundlagen, Menschen, Prozesse, Techniken. dpunkt.verlag,
2006.

[LW00] Dean Leffingwell and Don Widrig. Managing Software Require-
ments. Addison-Wesley, 2000.

[Mar94] Robert C. Martin. OO Design Quality Metric. An analysis
of dependencies. http://www.objectmentor.com/resources/

articles/oodmetrc.pdf, 1994. [Online, accessed February 14,
2007].

[MOZ] The Mozilla Organization. http://www.mozilla.org/. [Online,
accessed January 26, 2007].

http://www.intland.com/
http://java.sun.com/j2se/1.4.2/
http://java.sun.com/j2se/1.4.2/
http://www.jfree.org/jfreechart/
http://www.atlassian.com/software/jira/
http://en.wikipedia.org/wiki/Levenshtein_Distance/
http://en.wikipedia.org/wiki/Levenshtein_Distance/
http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.objectmentor.com/resources/articles/oodmetrc.pdf
http://www.mozilla.org/

BIBLIOGRAPHY 123

[PGF96] Robert E. Park, Wolfhart B. Goethert, and William A. Florac.
Goal-Driven Measurement. A Guidebook. Software Engineering
Institute, Pittsburgh, PA, 1996.

[POLa] Polarion for Subversion. http://www.polarion.com/subv/. [On-
line, accessed January 26, 2007].

[POLb] Polarion Software GmbH. http://www.polarion.com/. [Online,
accessed January 26, 2007].

[RU89] Dieter H. Rombach and Bradford T. Ulery. Improving software
maintenance through measurement. Proceedings of the IEEE,
77(4):581 – 595, April 1989.

[Sed03] Robert Sedgewick. Algorithms in Java. Parts 1-4: Fundamen-
tals, Data Structures, Sorting, Searching. 3rd Edition. Pearson
Education, Inc., 2003.

[SER] Java Servlet Technology. http://java.sun.com/products/

servlet/. [Online, accessed February 16, 2007].

[SHT05] Harry M. Sneed, Martin Hasitschka, and Maria-Therese Teich-
mann. Software-Produktmanagement. Wartung und Weiteren-
twicklung bestehender Anwendungssysteme. dpunkt, 2005.

[Som04] Ian Sommerville. Software Engineering 7. Addison Wesley, 2004.

[Tha97] Richard H. Thayer. Software Engineering Project Management,
2nd Edition. Wiley, 1997.

[TOM] Apache Tomcat. http://tomcat.apache.org/. [Online, accessed
February 16, 2007].

[Tuf98] Edward R. Tufte. The Visual Display of Quantitative Informa-
tion. Graphics Press, USA, 1998.

http://www.polarion.com/subv/
http://www.polarion.com/
http://java.sun.com/products/servlet/
http://java.sun.com/products/servlet/
http://tomcat.apache.org/

	1 Introduction
	2 Basic Terms
	2.1 Change Request Management
	2.2 Software Metrics
	2.3 Goal-Question-Metric (GQM) Approach
	2.4 Charts

	3 Evaluation of Existing Tools
	3.1 Bugzilla
	3.2 JIRA
	3.3 Polarion
	3.4 Code Beamer
	3.5 Summary

	4 Requirements
	4.1 Introduction
	4.1.1 Goal and intention of the product
	4.1.2 Users of the product
	4.1.3 Assumptions and dependencies

	4.2 Concept Maps
	4.2.1 Change Request Management
	4.2.2 Case
	4.2.3 Case State
	4.2.4 Event

	4.3 Functional Requirements
	4.3.1 Basic Algorithm Parameters
	4.3.2 Metrics
	4.3.3 Metric Categories
	4.3.4 Charts
	4.3.5 Web Frontend

	4.4 Non-Functional Requirements
	4.4.1 Performance Requirements
	4.4.2 Maintenance Requirements
	4.4.3 Security Requirements
	4.4.4 Other Requirements

	5 Software Process
	5.1 Project Constraints
	5.2 Project Constraint Consequences
	5.3 Process Description
	5.3.1 Initial Requirements Engineering
	5.3.2 System Implementation
	5.3.3 System Documentation and Rollout

	6 System Architecture
	6.1 General Architecture
	6.2 Core Algorithm Sequence
	6.3 Core Algorithm Variation Points
	6.4 Case State Filtering
	6.5 Event Creation
	6.6 Event Filters
	6.7 Case Value Calculation
	6.8 Case Value Classification
	6.9 Group Evaluation
	6.10 Information Requirement Abstraction
	6.11 Data Source Abstraction
	6.12 SQL Access Abstraction
	6.13 Efficiency Optimizations
	6.14 Test Framework
	6.15 Chart Module
	6.16 Frontend

	7 Evaluation
	7.1 Software Process Evaluation
	7.1.1 Process Classification
	7.1.2 Process Characteristics

	7.2 Software Product Evaluation
	7.2.1 Functionality
	7.2.2 Reliability
	7.2.3 Usability
	7.2.4 Efficiency
	7.2.5 Maintainability
	7.2.6 Portability

	7.3 Metric and Usage Evaluation

	8 Summary and Perspective
	A Used Software
	Bibliography

